-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathner.py
363 lines (305 loc) · 14.5 KB
/
ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
from sklearn import metrics
torch.manual_seed(1)
def to_scalar(var):
# returns a python float
return var.view(-1).data.tolist()[0]
def argmax(vec):
# return the argmax as a python int
_, idx = torch.max(vec, 1)
return to_scalar(idx)
def is_disease(word):
if(len(word)<3):
return False
elif(word[-2:]=='al' or word[-2:]=='ic' or word[-3:]=='ies' or word[-2:]=='is' or word[-2:]=='ia'):
return True
else:
return False
def is_treatment(word):
if(len(word)<2):
return False
elif(word[-2:]=='in'):
return True
elif(len(word)<7):
return False
elif(word[-7:]=='surgery' or word[-7:]=='therapy'):
return True
else:
return False
def prepare_sequence(seq, word_to_ix, char_to_ix, max_word_len):
idxs = []
caps = []
lngth = []
treatment = []
disease = []
for w in seq:
if(is_treatment(w)):
treatment.append(1.0)
else:
treatment.append(0.0)
if(is_disease(w)):
disease.append(1.0)
else:
disease.append(0.0)
lngth.append((len(w) + 0.0)/max_word_len)
if w[0].isupper():
caps.append(1.0)
else:
caps.append(0.0)
if w in word_to_ix:
idxs.append(word_to_ix[w])
else:
idxs.append(word_to_ix['Unk'])
tensor = torch.LongTensor(idxs)
fidxs = []
for w in seq:
cidxs = []
for c in w:
if c in char_to_ix:
cidxs.append(char_to_ix[c])
else:
cidxs.append(char_to_ix['#'])
fidxs.append(autograd.Variable(torch.LongTensor(cidxs)))
return autograd.Variable(tensor), fidxs, autograd.Variable(torch.FloatTensor(caps).view(-1, 1)), autograd.Variable(torch.FloatTensor(lngth).view(-1, 1)), autograd.Variable(torch.FloatTensor(treatment).view(-1, 1)), autograd.Variable(torch.FloatTensor(disease).view(-1, 1))
# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
max_score = vec[0, argmax(vec)]
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
return max_score + \
torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, char_size, tag_to_ix, embedding_dim, char_embedding, hidden_dim, hidden_dim_char):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = embedding_dim
self.char_embedding = char_embedding
self.hidden_dim = hidden_dim
self.hidden_dim_char = hidden_dim_char
self.vocab_size = vocab_size
self.char_size = char_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
self.char_embeds = nn.Embedding(char_size, char_embedding)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
num_layers=1, bidirectional=True)
self.char_lstm = nn.LSTM(char_embedding, hidden_dim_char // 2,
num_layers=1, bidirectional=True)
# Maps the output of the LSTM into tag space.
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
self.hidden2tag_char = nn.Linear(hidden_dim_char, self.tagset_size)
self.jointhem = nn.Linear(self.tagset_size + 4, self.tagset_size)
# Matrix of transition parameters. Entry i,j is the score of
# transitioning *to* i *from* j.
self.transitions = nn.Parameter(
torch.randn(self.tagset_size, self.tagset_size))
# These two statements enforce the constraint that we never transfer
# to the start tag and we never transfer from the stop tag
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
self.hidden = self.init_hidden()
self.char_hidden = self.init_char_hidden()
def init_hidden(self):
return (autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)),
autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)))
def init_char_hidden(self):
return (autograd.Variable(torch.randn(2, 1, self.hidden_dim_char // 2)),
autograd.Variable(torch.randn(2, 1, self.hidden_dim_char // 2)))
def _forward_alg(self, feats):
# Do the forward algorithm to compute the partition function
init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.)
# START_TAG has all of the score.
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
forward_var = autograd.Variable(init_alphas)
# Iterate through the sentence
for feat in feats:
alphas_t = [] # The forward variables at this timestep
for next_tag in range(self.tagset_size):
# broadcast the emission score: it is the same regardless of
# the previous tag
emit_score = feat[next_tag].view(
1, -1).expand(1, self.tagset_size)
# the ith entry of trans_score is the score of transitioning to
# next_tag from i
trans_score = self.transitions[next_tag].view(1, -1)
# The ith entry of next_tag_var is the value for the
# edge (i -> next_tag) before we do log-sum-exp
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the
# scores.
alphas_t.append(log_sum_exp(next_tag_var))
forward_var = torch.cat(alphas_t).view(1, -1)
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
alpha = log_sum_exp(terminal_var)
return alpha
def _get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
def _get_char_lstm(self, word):
self.char_hidden = self.init_char_hidden()
old_embeds = self.char_embeds(word)
embeds = old_embeds.view(len(word), 1, -1)
lstm_out, self.char_hidden = self.char_lstm(embeds, self.char_hidden)
lstm_out = lstm_out.view(len(word), self.hidden_dim_char)
lstm_feats = self.hidden2tag_char(lstm_out)
return lstm_feats[-1].view(1, -1)
def _score_sentence(self, feats, tags):
# Gives the score of a provided tag sequence
score = autograd.Variable(torch.Tensor([0]))
tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags])
for i, feat in enumerate(feats):
score = score + \
self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
return score
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
# forward_var at step i holds the viterbi variables for step i-1
forward_var = autograd.Variable(init_vvars)
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the
# previous step, plus the score of transitioning
# from tag i to next_tag.
# We don't include the emission scores here because the max
# does not depend on them (we add them in below)
next_tag_var = forward_var + self.transitions[next_tag]
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id])
# Now add in the emission scores, and assign forward_var to the set
# of viterbi variables we just computed
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
backpointers.append(bptrs_t)
# Transition to STOP_TAG
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG] # Sanity check
best_path.reverse()
return path_score, best_path
def neg_log_likelihood(self, sentence, words, caps, lngth, treatment, disease,tags):
feats = self._get_lstm_features(sentence)
final_char = self._get_char_lstm(words[0])
for word in words[1:]:
lstm_char_feats = self._get_char_lstm(word)
final_char = torch.cat([final_char, lstm_char_feats])
# feats = torch.cat([feats, final_char], dim=1)
feats = torch.cat([feats, caps], dim=1)
feats = torch.cat([feats, lngth], dim=1)
feats = torch.cat([feats, treatment], dim=1)
feats = torch.cat([feats, disease], dim=1)
feats = self.jointhem(feats)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
def forward(self, sentence, words, caps, lngth, treatment, disease): # dont confuse this with _forward_alg above.
# Get the emission scores from the BiLSTM
lstm_feats = self._get_lstm_features(sentence)
final_char = self._get_char_lstm(words[0])
for word in words[1:]:
lstm_char_feats = self._get_char_lstm(word)
final_char = torch.cat([final_char, lstm_char_feats])
# lstm_feats = torch.cat([lstm_feats, final_char], dim=1)
lstm_feats = torch.cat([lstm_feats, caps], dim=1)
lstm_feats = torch.cat([lstm_feats, lngth], dim=1)
lstm_feats = torch.cat([lstm_feats, treatment], dim=1)
lstm_feats = torch.cat([lstm_feats, disease], dim=1)
lstm_feats = self.jointhem(lstm_feats)
# Find the best path, given the features.
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq
START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 50
CHAR_DIM = 10
HIDDEN_DIM = 50
HIDDEN_DIM_CHAR = 10
lines = [line.rstrip('\n') for line in open('/home/cse/btech/cs1150245/scratch/train.txt')]
full_data = []
word1 = []
tag = []
for word in lines:
curr_word = word.split()
if not curr_word:
full_data.append((word1,tag))
word1 = []
tag = []
else:
word1.append(curr_word[0])
tag.append(curr_word[1])
print(len(full_data))
training_data = full_data[:3000]
test_data = full_data[3000:]
max_word_len = 0
word_to_ix = {}
for sentence, tags in training_data:
for word in sentence:
if(len(word)>max_word_len):
max_word_len = len(word)
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
char_to_ix = {}
for sentence, tags in training_data:
for word in sentence:
for char in word:
if char not in char_to_ix:
char_to_ix[char] = len(char_to_ix)
word_to_ix['Unk'] = len(word_to_ix)
if not '#' in char_to_ix:
char_to_ix['#'] = len(char_to_ix)
tag_to_ix = {"O": 0, "T": 1, "D": 2, START_TAG: 3, STOP_TAG: 4}
print(len(char_to_ix))
model = BiLSTM_CRF(len(word_to_ix), len(char_to_ix), tag_to_ix, EMBEDDING_DIM, CHAR_DIM, HIDDEN_DIM, HIDDEN_DIM_CHAR)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
# Check predictions before training
# precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
# precheck_tags = torch.LongTensor([tag_to_ix[t] for t in training_data[0][1]])
# print(model(precheck_sent))
# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(20): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()
# Step 2. Get our inputs ready for the network, that is,
# turn them into Variables of word indices.
sentence_in, words_in, caps_in, lngth_in, treatment_in, disease_in = prepare_sequence(sentence, word_to_ix, char_to_ix, max_word_len)
targets = torch.LongTensor([tag_to_ix[t] for t in tags])
# Step 3. Run our forward pass.
neg_log_likelihood = model.neg_log_likelihood(sentence_in, words_in, caps_in, lngth_in, treatment_in, disease_in, targets)
# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
neg_log_likelihood.backward()
optimizer.step()
# torch.save(model.state_dict(), '/home/cse/btech/cs1150245/scratch/model' + '_' + str(epoch) + '.pth')
corr_arr = []
pred_arr = []
for sent in test_data:
precheck_sent, precheck_words, precheck_caps, precheck_lngth, precheck_treatment, precheck_disease = prepare_sequence(sent[0], word_to_ix, char_to_ix, max_word_len)
some_model = model(precheck_sent, precheck_words, precheck_caps, precheck_lngth, precheck_treatment, precheck_disease)
ans_tag = some_model[1]
for corr_tag, pred in zip(sent[1], ans_tag):
corr_arr.append(tag_to_ix[corr_tag])
pred_arr.append(pred)
print(metrics.f1_score(corr_arr, pred_arr, average='macro', labels=[1, 2]))
# def getscore()