-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaffine_flow_time_to_contact.py
96 lines (75 loc) · 3.21 KB
/
affine_flow_time_to_contact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
###############################################################################
#
# File: affine_flow_time_to_contact.py
# Available under MIT license
#
# Calculate time to contact from affine flow parameters
#
# History:
# 04-23-20 - Levi Burner - Created file
# 09-26-22 - Levi Burner - Open source release
#
###############################################################################
import numpy as np
class AffineFlowTimeToContactEstimator(object):
def __init__(self, patch_coordinates, K, stride=None):
self._patch_coordinates = patch_coordinates
self._K = K
self._K_inv = np.linalg.inv(self._K)
self._patch_center_xy = np.array([(self._patch_coordinates[2] + self._patch_coordinates[0]) / 2.0,
(self._patch_coordinates[3] + self._patch_coordinates[1]) / 2.0])
self._X_0_ttc = np.array([self._patch_center_xy[0], self._patch_center_xy[1], 1])
self._last_p = None
def estimate_ttc(self, p):
if self._last_p is None:
self._last_p = p
return False
A_0 = self._K_inv @ np.array([[1+self._last_p[0], self._last_p[2], self._last_p[4]],
[self._last_p[1], 1+self._last_p[3], self._last_p[5]],
[ 0, 0, 1]]) @ self._K
A_1 = self._K_inv @ np.array([[1+p[0], p[2], p[4]],
[p[1], 1+p[3], p[5]],
[ 0, 0, 1]]) @ self._K
self._last_p = p
try:
# dp = I - A_0 A_1^-1
dp = np.linalg.solve(A_1.transpose(), (A_1 - A_0).transpose()).transpose()
except np.linalg.LinAlgError:
return False
a = np.array([0, 0, dp[0, 0], dp[0, 1], dp[0, 2], dp[1, 0], dp[1, 1], dp[1, 2]])
# Select a point to return the ttc for
X_ttc = A_1 @ self._K_inv @ self._X_0_ttc
EPS_XY = 1E-3
x_dot_over_z, y_dot_over_z, _ = a_to_frequency_of_contact(a, X_ttc, EPS_XY)
EPS_Z = 2E-3
_, _, z_dot_over_z = a_to_frequency_of_contact(a, X_ttc, EPS_Z)
return x_dot_over_z, y_dot_over_z, z_dot_over_z, X_ttc
def a_to_frequency_of_contact(a, X_ttc, EPS):
if abs(a[4]) < EPS and abs(a[7]) < EPS: # Don't divide by a[4], a[7], assume U,V=0
W_c = (a[2] + a[6]) / 2
U_a = -(a[2] - W_c)
V_b = -(a[6] - W_c)
W_a = 0
W_b = 0
elif abs(a[4]) < EPS: # Don't divide by a[4], assume U=0
U_a = -a[5]*(a[4]/a[7])
W_c = a[2] + U_a
V_b = -(a[6] - W_c)
W_a = W_c * a[5] / a[7]
W_b = 0
elif abs(a[7]) < EPS: # Don't divide by a[7], assume V=0
V_b = -a[3]*(a[7]/a[4])
W_c = a[6] + V_b
U_a = -(a[2] - W_c)
W_a = 0
W_b = W_c * a[3] / a[4]
else:
U_a = -a[5]*(a[4]/a[7])
V_b = -a[3]*(a[7]/a[4])
W_c = ((a[2] + U_a) + (a[6] + V_b)) / 2
W_a = W_c * a[5] / a[7]
W_b = W_c * a[3] / a[4]
x_dot_over_z = U_a * X_ttc[0] - a[3] * X_ttc[1] - a[4]
y_dot_over_z = -a[5] * X_ttc[0] + V_b * X_ttc[1] - a[7]
z_dot_over_z = W_a * X_ttc[0] + W_b * X_ttc[1] + W_c
return x_dot_over_z, y_dot_over_z, z_dot_over_z