-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathttc_depth_plot_live.py
486 lines (398 loc) · 15.8 KB
/
ttc_depth_plot_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
###############################################################################
#
# File: ttc_depth_plot_live.py
# Available under MIT license
#
# Plot states published by ttc_depth.py over a ZMQ socket
#
# History:
# 08-30-21 - Levi Burner - Created File
# 09-26-22 - Levi Burner - Open source release
#
###############################################################################
import struct
import threading
import numpy as np
import zmq
import matplotlib.pyplot as plt
import matplotlib.animation as animation
port = '5556'
STOPPED = False
sensors = {}
sensors[b'R_fc_to_c'] = []
sensors[b'p'] = []
sensors[b'ttc_inv'] = []
sensors[b'ttc_inv_gt'] = []
sensors[b'pose_hat'] = []
sensors[b'phi_pose_hat'] = []
sensors[b'ground_truth_pose'] = []
sensors[b'accel_meas_c'] = []
sensors[b'gyro'] = []
sensors[b'accel_z_hat'] = []
sensors[b'phi_accel_z_hat'] = []
def zmq_receive_thread(port):
# Socket to talk to server
context = zmq.Context()
socket = context.socket(zmq.SUB)
print('Collecting updates from server...')
socket.connect ("tcp://localhost:{}".format(port))
topicfilter = "ttc_depth".encode('ascii')
socket.setsockopt(zmq.SUBSCRIBE, topicfilter)
while not STOPPED:
topic = socket.recv()
base_name, sensor = topic.split(b'/')
time_bytes = socket.recv()
t = struct.unpack('d', time_bytes)
md = socket.recv_json()
msg = socket.recv()
buf = memoryview(msg)
x = np.frombuffer(buf, dtype=md['dtype']).reshape(md['shape'])
try:
sensors[sensor].append((t, x))
except KeyError as e:
print('Unrecognized sensor: {}'.format(sensor))
# Plotting based on: https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/speeding-up-the-plot-animation
def ttc_depth_plot_live_process():
x_len = 300
xs = list(range(0, x_len))
fig = plt.figure()
ROWS = 4
COLS = 3
Z_LIM = (-4.0, 0.5)
F_LIM = (-4.0, 4.0)
# Setup pose plots
ly1 = [0] * x_len
ly2 = [0] * x_len
ly3 = [0] * x_len
ly4 = [0] * x_len
ly5 = [0] * x_len
ly6 = [0] * x_len
ax = fig.add_subplot(ROWS, COLS, 1)
ax.set_ylim([-1, 1])
lline1, = ax.plot(xs, ly1)
lline4, = ax.plot(xs, ly4)
llllllllllly1 = [0] * x_len
lllllllllllline1, = ax.plot(xs, llllllllllly1)
plt.ylabel('X (m)')
plt.legend(['x_hat', 'x_gt', 'phi_x_hat'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 2)
ax.set_ylim([-1, 1])
lline2, = ax.plot(xs, ly2)
lline5, = ax.plot(xs, ly5)
llllllllllly2 = [0] * x_len
lllllllllllline2, = ax.plot(xs, llllllllllly2)
plt.ylabel('Y (m)')
plt.legend(['y_hat', 'y_gt', 'phi_y_hat'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 3)
ax.set_ylim(Z_LIM)
lline3, = ax.plot(xs, ly3)
lline6, = ax.plot(xs, ly6)
llllllllllly3 = [0] * x_len
lllllllllllline3, = ax.plot(xs, llllllllllly3)
plt.ylabel('Z (m)')
plt.legend(['z_hat', 'z_gt', 'phi_z_hat'])
plt.grid()
# Setup Orientation plot
ax = fig.add_subplot(ROWS, COLS, 4, projection='3d')
axis = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
lines = []
for a in axis:
line_data = np.array([[0, 0, 0], [a[0], a[1], a[2]]]).transpose()
line = ax.plot(line_data[0, :], line_data[1, :], line_data[2, :])[0]
lines.append(line)
ax.set_xlim3d([-1.0, 1.0])
ax.set_xlabel('X')
ax.set_ylim3d([-1.0, 1.0])
ax.set_ylabel('Y')
ax.set_zlim3d([-1.0, 1.0])
ax.set_title('Integrated Orientation')
plt.legend(['x', 'y', 'z'])
ax = fig.add_subplot(ROWS, COLS, 5)
ax.set_ylim([-10, 10])
llly1 = [0] * x_len
llly2 = [0] * x_len
llly3 = [0] * x_len
lllline1, = ax.plot(xs, llly1)
lllline2, = ax.plot(xs, llly2)
lllline3, = ax.plot(xs, llly3)
plt.ylabel('accel (m/s^2)')
plt.legend(['x','y','z'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 6)
ax.set_ylim([-np.pi, np.pi])
lllly1 = [0] * x_len
lllly2 = [0] * x_len
lllly3 = [0] * x_len
llllline1, = ax.plot(xs, lllly1)
llllline2, = ax.plot(xs, lllly2)
llllline3, = ax.plot(xs, lllly3)
plt.ylabel('gyro (rad/s)')
plt.legend(['x','y','z'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 7)
ax.set_ylim(F_LIM)
llllly1 = [0] * x_len
llllly2 = [0] * x_len
lllllline1, = ax.plot(xs, llllly1)
lllllline2, = ax.plot(xs, llllly2)
plt.ylabel('depth scaled velocity 1/s')
plt.legend(['dot x / z', 'dot x / z gt'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 8)
ax.set_ylim(F_LIM)
lllllly1 = [0] * x_len
lllllly2 = [0] * x_len
llllllline1, = ax.plot(xs, lllllly1)
llllllline2, = ax.plot(xs, lllllly2)
plt.ylabel('depth scaled velocity 1/s')
plt.legend(['dot y / z', 'dot y / z gt'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 9)
ax.set_ylim(F_LIM)
llllllly1 = [0] * x_len
llllllly2 = [0] * x_len
lllllllline1, = ax.plot(xs, llllllly1)
lllllllline2, = ax.plot(xs, llllllly2)
plt.ylabel('depth scaled velocity 1/s')
plt.legend(['dot z / z', 'dot z / z gt'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 10)
ax.set_ylim(Z_LIM)
lllllllly1 = [0] * x_len
llllllllly1 = [0] * x_len
lllllllllly1 = [0] * x_len
lllllllllllly1 = [0] * x_len
llllllllllllly1 = [0] * x_len
llllllllline1, = ax.plot(xs, lllllllly1)
lllllllllline1, = ax.plot(xs, llllllllly1)
llllllllllline1, = ax.plot(xs, lllllllllly1)
llllllllllllline1, = ax.plot(xs, lllllllllllly1)
lllllllllllllline1, = ax.plot(xs, llllllllllllly1)
plt.ylabel('X (m)')
plt.legend(['accel_x_gt', 'x_hat', 'x_gt', 'phi_x_hat', 'p_accel_x_gt'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 11)
ax.set_ylim(Z_LIM)
lllllllly2 = [0] * x_len
llllllllly2 = [0] * x_len
lllllllllly2 = [0] * x_len
lllllllllllly2 = [0] * x_len
llllllllllllly2 = [0] * x_len
llllllllline2, = ax.plot(xs, lllllllly2)
lllllllllline2, = ax.plot(xs, llllllllly2)
llllllllllline2, = ax.plot(xs, lllllllllly2)
llllllllllllline2, = ax.plot(xs, lllllllllllly2)
lllllllllllllline2, = ax.plot(xs, llllllllllllly2)
plt.ylabel('Y (m)')
plt.legend(['accel_y_gt', 'y_hat', 'y_gt', 'phi_y_hat', 'p_accel_y_gt'])
plt.grid()
ax = fig.add_subplot(ROWS, COLS, 12)
ax.set_ylim(Z_LIM)
lllllllly3 = [0] * x_len
llllllllly3 = [0] * x_len
lllllllllly3 = [0] * x_len
lllllllllllly3 = [0] * x_len
llllllllllllly3 = [0] * x_len
llllllllline3, = ax.plot(xs, lllllllly3)
lllllllllline3, = ax.plot(xs, llllllllly3)
llllllllllline3, = ax.plot(xs, lllllllllly3)
llllllllllllline3, = ax.plot(xs, lllllllllllly3)
lllllllllllllline3, = ax.plot(xs, llllllllllllly3)
plt.ylabel('Z (m)')
plt.legend(['accel_z_gt', 'z_hat', 'z_gt', 'phi_z_hat', 'p_accel_z_gt'])
plt.grid()
# This function is called periodically from FuncAnimation
def animate(i,
sensors,
ly1, ly2, ly3, ly4, ly5, ly6,
lines,
llly1, llly2, llly3,
lllly1, lllly2, lllly3,
llllly1, llllly2,
lllllly1, lllllly2,
llllllly1, llllllly2,
lllllllly1, lllllllly2, lllllllly3,
llllllllly1, llllllllly2, llllllllly3,
lllllllllly1, lllllllllly2, lllllllllly3,
llllllllllly1, llllllllllly2, llllllllllly3,
lllllllllllly1, lllllllllllly2, lllllllllllly3,
llllllllllllly1, llllllllllllly2, llllllllllllly3):
# Plot linear acceleration
if len(sensors[b'pose_hat']) > 0:
ly1.append(sensors[b'pose_hat'][-1][1][0])
ly2.append(sensors[b'pose_hat'][-1][1][1])
ly3.append(sensors[b'pose_hat'][-1][1][2])
ly1 = ly1[-x_len:]
ly2 = ly2[-x_len:]
ly3 = ly3[-x_len:]
lline1.set_ydata(ly1)
lline2.set_ydata(ly2)
lline3.set_ydata(ly3)
# On 4th row 3 plots
llllllllly1.append(sensors[b'pose_hat'][-1][1][2])
llllllllly2.append(sensors[b'pose_hat'][-1][1][2])
llllllllly3.append(sensors[b'pose_hat'][-1][1][2])
llllllllly1 = llllllllly1[-x_len:]
llllllllly2 = llllllllly2[-x_len:]
llllllllly3 = llllllllly3[-x_len:]
lllllllllline1.set_ydata(llllllllly1)
lllllllllline2.set_ydata(llllllllly2)
lllllllllline3.set_ydata(llllllllly3)
if len(sensors[b'phi_pose_hat']) > 0:
llllllllllly1.append(sensors[b'phi_pose_hat'][-1][1][0])
llllllllllly2.append(sensors[b'phi_pose_hat'][-1][1][1])
llllllllllly3.append(sensors[b'phi_pose_hat'][-1][1][2])
llllllllllly1 = llllllllllly1[-x_len:]
llllllllllly2 = llllllllllly2[-x_len:]
llllllllllly3 = llllllllllly3[-x_len:]
lllllllllllline1.set_ydata(llllllllllly1)
lllllllllllline2.set_ydata(llllllllllly2)
lllllllllllline3.set_ydata(llllllllllly3)
# On 4th row 3 plots
lllllllllllly1.append(sensors[b'phi_pose_hat'][-1][1][2])
lllllllllllly2.append(sensors[b'phi_pose_hat'][-1][1][2])
lllllllllllly3.append(sensors[b'phi_pose_hat'][-1][1][2])
lllllllllllly1 = lllllllllllly1[-x_len:]
lllllllllllly2 = lllllllllllly2[-x_len:]
lllllllllllly3 = lllllllllllly3[-x_len:]
llllllllllllline1.set_ydata(lllllllllllly1)
llllllllllllline2.set_ydata(lllllllllllly2)
llllllllllllline3.set_ydata(lllllllllllly3)
if len(sensors[b'ground_truth_pose']) > 0:
ly4.append(sensors[b'ground_truth_pose'][-1][1][0])
ly5.append(sensors[b'ground_truth_pose'][-1][1][1])
ly6.append(sensors[b'ground_truth_pose'][-1][1][2])
ly4 = ly4[-x_len:]
ly5 = ly5[-x_len:]
ly6 = ly6[-x_len:]
lline4.set_ydata(ly4)
lline5.set_ydata(ly5)
lline6.set_ydata(ly6)
# On 4th row 3 plots
lllllllllly1.append(sensors[b'ground_truth_pose'][-1][1][2])
lllllllllly2.append(sensors[b'ground_truth_pose'][-1][1][2])
lllllllllly3.append(sensors[b'ground_truth_pose'][-1][1][2])
lllllllllly1 = lllllllllly1[-x_len:]
lllllllllly2 = lllllllllly2[-x_len:]
lllllllllly3 = lllllllllly3[-x_len:]
llllllllllline1.set_ydata(lllllllllly1)
llllllllllline2.set_ydata(lllllllllly2)
llllllllllline3.set_ydata(lllllllllly3)
# Plot orientation axis
if len(sensors[b'R_fc_to_c']) > 0:
t, R_fc_to_c = sensors[b'R_fc_to_c'][-1]
else:
R_fc_to_c = np.eye(3)
axis_rotated = R_fc_to_c @ axis
for a, line in zip(axis_rotated.transpose(), lines):
line_data = np.array([[0, 0, 0], [a[0], a[1], a[2]]]).transpose()
line.set_data(line_data[0:2, :])
line.set_3d_properties(line_data[2, :])
# Plot acceleration
if len(sensors[b'accel_meas_c']) > 0:
llly1.append(sensors[b'accel_meas_c'][-1][1][0])
llly2.append(sensors[b'accel_meas_c'][-1][1][1])
llly3.append(sensors[b'accel_meas_c'][-1][1][2])
llly1 = llly1[-x_len:]
llly2 = llly2[-x_len:]
llly3 = llly3[-x_len:]
lllline1.set_ydata(llly1)
lllline2.set_ydata(llly2)
lllline3.set_ydata(llly3)
# Plot gyro
if len(sensors[b'gyro']) > 0:
lllly1.append(sensors[b'gyro'][-1][1][0])
lllly2.append(sensors[b'gyro'][-1][1][1])
lllly3.append(sensors[b'gyro'][-1][1][2])
lllly1 = lllly1[-x_len:]
lllly2 = lllly2[-x_len:]
lllly3 = lllly3[-x_len:]
llllline1.set_ydata(lllly1)
llllline2.set_ydata(lllly2)
llllline3.set_ydata(lllly3)
# Plot ttc_inv
if len(sensors[b'ttc_inv']) > 0:
llllly1.append(sensors[b'ttc_inv'][-1][1][0])
llllly1 = llllly1[-x_len:]
lllllly1.append(sensors[b'ttc_inv'][-1][1][1])
lllllly1 = lllllly1[-x_len:]
llllllly1.append(sensors[b'ttc_inv'][-1][1][2])
llllllly1 = llllllly1[-x_len:]
lllllline1.set_ydata(llllly1)
llllllline1.set_ydata(lllllly1)
lllllllline1.set_ydata(llllllly1)
# Plot ttc_inv_gt
if len(sensors[b'ttc_inv_gt']) > 0:
llllly2.append(sensors[b'ttc_inv_gt'][-1][1][0])
llllly2 = llllly2[-x_len:]
lllllly2.append(sensors[b'ttc_inv_gt'][-1][1][1])
lllllly2 = lllllly2[-x_len:]
llllllly2.append(sensors[b'ttc_inv_gt'][-1][1][2])
llllllly2 = llllllly2[-x_len:]
lllllline2.set_ydata(llllly2)
llllllline2.set_ydata(lllllly2)
lllllllline2.set_ydata(llllllly2)
# Plot accel_z_hat
if len(sensors[b'accel_z_hat']) > 0:
lllllllly1.append(sensors[b'accel_z_hat'][-1][1][0])
lllllllly1 = lllllllly1[-x_len:]
llllllllline1.set_ydata(lllllllly1)
lllllllly2.append(sensors[b'accel_z_hat'][-1][1][1])
lllllllly2 = lllllllly2[-x_len:]
llllllllline2.set_ydata(lllllllly2)
lllllllly3.append(sensors[b'accel_z_hat'][-1][1][2])
lllllllly3 = lllllllly3[-x_len:]
llllllllline3.set_ydata(lllllllly3)
# Plot phi_accel_z_hat
if len(sensors[b'phi_accel_z_hat']) > 0:
llllllllllllly1.append(sensors[b'phi_accel_z_hat'][-1][1][0])
llllllllllllly1 = llllllllllllly1[-x_len:]
lllllllllllllline1.set_ydata(llllllllllllly1)
llllllllllllly2.append(sensors[b'phi_accel_z_hat'][-1][1][1])
llllllllllllly2 = llllllllllllly2[-x_len:]
lllllllllllllline2.set_ydata(llllllllllllly2)
llllllllllllly3.append(sensors[b'phi_accel_z_hat'][-1][1][2])
llllllllllllly3 = llllllllllllly3[-x_len:]
lllllllllllllline3.set_ydata(llllllllllllly3)
return (lline1, lline2, lline3, lline4, lline5, lline6,
lines[0], lines[1], lines[2],
lllline1, lllline2, lllline3,
llllline1, llllline2, llllline3,
lllllline1, lllllline2,
llllllline1, llllllline2,
lllllllline1, lllllllline2,
llllllllline1, llllllllline2, llllllllline3,
lllllllllline1, lllllllllline2, lllllllllline3,
llllllllllline1, llllllllllline2, llllllllllline3,
lllllllllllline1, lllllllllllline2, lllllllllllline3,
llllllllllllline1, llllllllllllline2, llllllllllllline3,
lllllllllllllline1, lllllllllllllline2, lllllllllllllline3)
# Set up plot to call animate() function periodically
ani = animation.FuncAnimation(fig,
animate,
fargs=(sensors,
ly1, ly2, ly3, ly4, ly5, ly6,
lines,
llly1, llly2, llly3,
lllly1, lllly2, lllly3,
llllly1, llllly2,
lllllly1, lllllly2,
llllllly1, llllllly2,
lllllllly1, lllllllly2, lllllllly3,
llllllllly1, llllllllly2, llllllllly3,
lllllllllly1, lllllllllly2, lllllllllly3,
llllllllllly1, llllllllllly2, llllllllllly3,
lllllllllllly1, lllllllllllly2, lllllllllllly3,
llllllllllllly1, llllllllllllly2, llllllllllllly3),
interval=10,
blit=True)
plt.show()
print('ttc_depth_live_plot_process exiting')
if __name__ == '__main__':
zmq_thread = threading.Thread(target=zmq_receive_thread, args=(port,))
zmq_thread.start()
ttc_depth_plot_live_process()
STOPPED = True
zmq_thread.join()