-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
783 lines (664 loc) · 39.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
import tensorflow as tf
import pdb
import numpy as np
import os
import utils.layers as layers
from utils.attention_gru_cell import AttentionGRUCell
import _pickle as cPickle
import yaml
import sys
from math import ceil
config = yaml.load(open(sys.argv[1]))
# importing the data loader depending on the dataset
if config['dataset'] == 'ShapeIntersection':
from utils.shape_intersection_loader import Loader
elif config['dataset'] == 'FloorPlanQA':
from utils.floor_plan_qa_loader import input_pipeline, preprocess
else:
raise Exception("Dataset name incorrect!")
# initializing variables
num_epochs = config['num_epochs']
early_stopping_epoch = config['early_stopping_epoch']
l2_reg = config['l2_reg']
dropout_reg = config['dropout_reg']
batch_size = config['batch_size']
learning_rate = config['learning_rate']
embedding_size = config['embedding_size']
run = config['run']
num_hops = config['num_hops']
abl_number = config['abl_number']
save_path = config['save_path']
reg = config['reg']
per_inter_sup = config['per_inter_sup']
pretrained = bool(config['pretrained'])
filenames_tr = [config['data_path'] + '/data.tr']
filenames_va = [config['data_path'] + '/data.va']
filenames_te = [config['data_path'] + '/data.te']
# constant variables
lstm_size = embedding_size
num_conv_layer = 1
num_tr_samples = 12800
num_tr_batches = num_tr_samples // batch_size
num_va_samples = 12800
num_va_batches = num_va_samples // batch_size
num_te_samples = 12800
num_te_batches = num_te_samples // batch_size
if num_tr_samples % batch_size != 0:
print("Train error is not correct")
if num_va_samples % batch_size != 0:
print("Validation error is not correct")
if num_te_samples % batch_size != 0:
print("Test error is not correct")
train_runs = (num_tr_samples // batch_size) * num_epochs
# initializing variables that depend on the model
samples_inter_sup = np.ones([num_tr_batches, batch_size])
if config['model'] == "DMN":
is_dmn = True
elif config['model'] == "DSMN":
is_dmn = False
if reg != 1 and per_inter_sup != 1:
per_data = config['data_path'] + '/data_' + str(per_inter_sup)
with open(per_data, 'rb') as fp:
samples_inter_sup = cPickle.load(fp)
samples_inter_sup = np.reshape(samples_inter_sup, [-1, batch_size])
else:
raise Exception("Model name incorrect")
# initializing variable depending on the dataset
if config['dataset'] == 'ShapeIntersection':
img_size = 32
max_num_sen = 12
max_sen_len = 5
max_ques_len = 1
num_options = 1
elif config['dataset'] == 'FloorPlanQA':
img_size = 36
max_num_sen = 11
max_sen_len = 19
max_ques_len = 6
num_options = 4
dictionary_lookup = config['data_path'] + '/lookup.pkl'
with open(dictionary_lookup, 'rb') as dictionary_file:
word_to_int = cPickle.load(dictionary_file)
vocabulary_size = len(word_to_int)
else:
raise Exception("Dataset name incorrect!")
small_img_size = ceil(img_size / 8)
def calc_acc_FloorPlanQA(sess, num_batches, batch_size, type):
""" To calculate the average accuracy by going through the entire data
type: possible values 'tr' (training), 'va' (validation) and 'te' (test)
"""
acc_cmp = 0
img_cmp = 0
for i in range(num_batches):
if type == 'tr':
data = sess.run(tr_batch, feed_dict=None)
elif type == 'va':
data = sess.run(va_batch, feed_dict=None)
elif type == 'te':
data = sess.run(te_batch, feed_dict=None)
temp = np.ones(batch_size)
X_d, X_length_d, Y_d, num_sen_d, mask_d, \
Ques_d, Ques_length_d, img_d = preprocess(data, word_to_int,
batch_size, max_num_sen,
max_sen_len)
acc_tmp, img_tmp = sess.run([accuracy_acc, accuracy_img],
feed_dict={X: X_d, X_length: X_length_d, Y: Y_d,
num_sen: num_sen_d, mask: mask_d,
Ques: Ques_d, Ques_length: Ques_length_d,
img: img_d, is_training: False,
dropout_keep: 1, img_loss_mask: temp})
acc_cmp += acc_tmp
img_cmp += img_tmp
return (acc_cmp / num_batches), (img_cmp / num_batches)
def calc_acc_ShapeIntersection(sess, num_batches, loader):
""" To calculate the average accuracy by going through the entire data"""
loss_cmp = 0
loss_img_cmp = 0
correct = 0
for i in range(num_batches):
temp = np.ones(128)
X_d, X_length_d, Y_d, num_sen_d, mask_d, \
Ques_d, Ques_length_d, img_d, loss_mask_d = loader.next_batch()
loss_tmp, Y_out_temp, loss_img_temp = sess.run([loss_acc, Y_out, loss_img],
feed_dict={X: X_d, X_length: X_length_d,
Y: Y_d, num_sen: num_sen_d,
mask: mask_d, Ques: Ques_d,
Ques_length: Ques_length_d,
img: img_d, loss_mask: loss_mask_d,
is_training: False, dropout_keep: 1,
img_loss_mask: temp})
loss_cmp += loss_tmp
loss_img_cmp += loss_img_temp
return loss_cmp / num_batches, loss_img_cmp / num_batches
def evaluate_FloorPlanQA(sess, train_writer, test_writer, validation_writer, validation_f_writer, chkpoint_dir):
"""To train, test and validate the model on the FloorPlanQA dataset"""
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
best_va_acc = 0
best_va_img = 0
best_va_acc_iter = 0
if pretrained == False:
for i in range(train_runs):
tr_data = sess.run(tr_batch, feed_dict=None)
X_tr, X_length_tr, Y_tr, num_sen_tr, mask_tr,
Ques_tr, Ques_length_tr, img_tr = preprocess(tr_data, word_to_int,
batch_size, max_num_sen,
max_sen_len)
img_loss_mask_tr = samples_inter_sup[i % num_tr_batches, 0:batch_size]
train_dict = {X: X_tr, X_length: X_length_tr, Y: Y_tr, num_sen: num_sen_tr,
mask: mask_tr, Ques: Ques_tr, Ques_length: Ques_length_tr,
img: img_tr, is_training: True, dropout_keep: dropout_reg,
img_loss_mask: img_loss_mask_tr}
summary, _ = sess.run([merged_tr, train_step], feed_dict=train_dict)
train_writer.add_summary(summary, i)
# Calculating validation accuracy after each epoch
if i % num_tr_batches == 0:
va_acc, va_img = calc_acc_FloorPlanQA(sess, num_va_batches, batch_size, 'va')
summary = sess.run(merged_va, feed_dict={complete_accuracy_acc: va_acc,
complete_accuracy_img: va_img})
validation_writer.add_summary(summary, i)
print("Validation Accuracy after " + str(i) + ' steps: ' + str(va_acc))
# Saving the best validation accuracy model
if va_acc > best_va_acc:
best_va_acc_iter = i
best_va_acc = va_acc
best_va_img = va_img
print("===> Saving the model with best validation accuracy")
saver.save(sess, chkpoint_dir + '/model')
# Early stopping
if (i - best_va_acc_iter) // num_tr_batches > early_stopping_epoch:
print("===> Early stopping")
break
print("===> Best Validation Accuracy:" + str(best_va_acc))
print("===> Restoring weights for best validation accuracy")
saver.restore(sess, chkpoint_dir + '/model')
summary = sess.run(merged_va_f,
feed_dict={complete_accuracy_acc: best_va_acc, complete_accuracy_img: best_va_img})
validation_f_writer.add_summary(summary, best_va_acc_iter)
# Calculating test accuracy
te_acc, te_img = calc_acc_FloorPlanQA(sess, num_te_batches, batch_size, 'te')
summary = sess.run(merged_te, feed_dict={complete_accuracy_acc: te_acc, complete_accuracy_img: te_img})
test_writer.add_summary(summary, best_va_acc_iter)
print("Test Accuracy after " + str(best_va_acc_iter) + ' steps: ' + str(te_acc))
else:
print("===> Restoring weights for the pretrained model")
saver.restore(sess, chkpoint_dir + '/model')
te_acc, te_img = calc_acc_FloorPlanQA(sess, num_te_batches, batch_size, 'te')
va_acc, va_img = calc_acc_FloorPlanQA(sess, num_va_batches, batch_size, 'va')
print("Test Accuracy for pretrained model: " + str(te_acc))
print("Validation Accuracy for pretrained model: " + str(va_acc))
coord.request_stop()
coord.join(threads)
def evaluate_ShapeIntersection(sess, train_writer, test_writer, validation_writer, validation_f_writer, chkpoint_dir):
"""To train, test and validate the model on the ShapeIntersection dataset"""
mask_range = 15
if per_inter_sup == 1:
shuffle_flag = True
else:
shuffle_flag = False
tr_data = Loader(filenames_tr[0], batch_size, mask_range, img_size, 1,
embedding_size=embedding_size, shuffle=shuffle_flag)
va_data = Loader(filenames_va[0], batch_size, mask_range, img_size, 1,
embedding_size=embedding_size, shuffle=shuffle_flag)
te_data = Loader(filenames_te[0], batch_size, mask_range, img_size, 1,
embedding_size=embedding_size, shuffle=shuffle_flag)
best_va_loss = float('inf')
best_va_iter = -1
best_va_img_loss = float('inf')
if pretrained == False:
for i in range(train_runs):
X_tr, X_length_tr, Y_tr, num_sen_tr, mask_tr, \
Ques_tr, Ques_length_tr, img_tr, loss_mask_tr = tr_data.next_batch()
img_loss_mask_tr = samples_inter_sup[i % num_tr_batches, 0:batch_size]
train_dict = {X: X_tr, X_length: X_length_tr, Y: Y_tr, num_sen: num_sen_tr,
mask: mask_tr, Ques: Ques_tr, Ques_length: Ques_length_tr,
img: img_tr, loss_mask: loss_mask_tr, is_training: True,
dropout_keep: dropout_reg, img_loss_mask: img_loss_mask_tr}
pred_tr, summary, _, tr_loss_acc, tr_loss_img = sess.run([Y_out, merged_tr, train_step,
loss_acc, loss_img],
feed_dict=train_dict)
train_writer.add_summary(summary, i)
# Calculating validation accuracy after each epoch
if i % num_tr_batches == 0:
va_loss, va_img_loss = calc_acc_ShapeIntersection(sess, num_va_batches, va_data)
summary = sess.run(merged_va, feed_dict={complete_loss: va_loss,
complete_img_loss: va_img_loss})
validation_writer.add_summary(summary, i)
print('Step: {}.'.format(i))
print('Validation RMSE: {}. Validation img RMSE: {}.'.format(np.sqrt(va_loss), np.sqrt(va_img_loss)))
if va_loss < best_va_loss:
best_va_iter = i
best_va_loss = va_loss
best_va_img_loss = va_img_loss
print("===> Saving the model with best validation loss")
saver.save(sess, chkpoint_dir + '/model')
# Early stopping
if (i - best_va_iter) // num_tr_batches > early_stopping_epoch:
print("Early stopping")
break
print('Best va step: {}. Best validation RMSE: {:.4f}.'.format(best_va_iter, np.sqrt(best_va_loss)))
print("===> Restoring weights for best validation loss")
saver.restore(sess, chkpoint_dir + '/model')
summary = sess.run(merged_va_f, feed_dict={complete_loss: best_va_loss, complete_img_loss: best_va_img_loss})
validation_f_writer.add_summary(summary, best_va_iter)
te_loss, te_img_loss = calc_acc_ShapeIntersection(sess, num_te_batches, te_data)
summary = sess.run(merged_te, feed_dict={complete_loss: te_loss, complete_img_loss: te_img_loss})
test_writer.add_summary(summary, best_va_iter)
print('Test RMSE: {:.4f} Test img RMSE: {:.2f}.'.format(np.sqrt(te_loss), np.sqrt(te_img_loss)))
else:
print('Loading the pretrained model')
saver.restore(sess, chkpoint_dir + '/model')
va_loss, va_img_loss = calc_acc_ShapeIntersection(sess, num_va_batches, va_data)
print('Validation RMSE: {}.'.format(np.sqrt(va_loss)))
te_loss, te_img_loss = calc_acc_ShapeIntersection(sess, num_te_batches, te_data)
print('Test RMSE: {:.4f}.'.format(np.sqrt(te_loss)))
tr_data.destruct()
va_data.destruct()
te_data.destruct()
# source: https://github.com/domluna/memn2n
def _position_encoding(sentence_size, embedding_size):
"""Position encoding described in section 4.1 in "End to End Memory Networks" (http://arxiv.org/pdf/1503.08895v5.pdf)"""
encoding = np.ones((embedding_size, sentence_size), dtype=np.float32)
ls = sentence_size + 1
le = embedding_size + 1
for i in range(1, le):
for j in range(1, ls):
encoding[i - 1, j - 1] = (i - (le - 1) / 2) * (j - (ls - 1) / 2)
encoding = 1 + 4 * encoding / embedding_size / sentence_size
return np.transpose(encoding)
def img_encoder(img, num_conv=1, reuse_var=None):
""" function to extact features from an image
the number of features returned is small_img_size * small_img_size * num_conv
shape(features) = [batch_size, small_img_size * small_img_size * num_conv]
"""
with tf.variable_scope('res_conv_proj1', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_conv_proj1 = layers.residual_layer_conv_projection(img)
with tf.variable_scope('res_conv1', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_conv1 = layers.residual_layer_conv(res_conv_proj1)
with tf.variable_scope('res_conv_proj2', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_conv_proj2 = layers.residual_layer_conv_projection(res_conv1)
with tf.variable_scope('res_conv2', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_conv2 = layers.residual_layer_conv(res_conv_proj2)
with tf.variable_scope('res_conv_proj3', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_conv_proj3 = layers.residual_layer_conv_projection(res_conv2)
with tf.variable_scope('conv1', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
conv1 = layers.convolution_layer(res_conv_proj3, [3, 3, 8, num_conv], [1, 1, 1, 1], padding='SAME',
relu_after=False)
features = tf.reshape(conv1, [-1, small_img_size * small_img_size * num_conv])
return features
def img_decoder(img, num_conv=1, reuse_var=None):
""" to decode the img from the embedding
img is of size batch_size * small_img_size * small_img_size * 1
"""
with tf.variable_scope('deconv1', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
deconv1 = layers.deconvolution_layer(img, [3, 3, 8 * num_conv, 1], deconv_strides=[1, 1, 1, 1], padding='SAME',
output_size=[batch_size, small_img_size, small_img_size, 8 * num_conv],
relu_after=False)
deconv1 = tf.nn.relu(deconv1)
with tf.variable_scope('res_deconv_proj1', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_deconv_proj1 = layers.residual_layer_deconv_projection(deconv1, relu_after=False,
output_shape=[batch_size, int(img_size / 4),
int(img_size / 4), 4 * num_conv])
res_deconv_proj1 = tf.nn.relu(res_deconv_proj1)
with tf.variable_scope('res_deconv1', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_deconv1 = layers.residual_layer_deconv(res_deconv_proj1, relu_after=False)
res_deconv1 = tf.nn.relu(res_deconv1)
with tf.variable_scope('res_deconv_proj2', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_deconv_proj2 = layers.residual_layer_deconv_projection(res_deconv1, relu_after=False)
res_deconv_proj2 = tf.nn.relu(res_deconv_proj2)
with tf.variable_scope('res_deconv2', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_deconv2 = layers.residual_layer_deconv(res_deconv_proj2, relu_after=False)
res_deconv2 = tf.nn.relu(res_deconv2)
with tf.variable_scope('res_deconv_proj3', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
res_deconv_proj3 = layers.residual_layer_deconv_projection(res_deconv2, relu_after=False)
return res_deconv_proj3
if __name__ == '__main__':
if config['dataset'] == 'FloorPlanQA':
tr_batch = input_pipeline(filenames_tr, batch_size, num_options)
va_batch = input_pipeline(filenames_va, batch_size, num_options)
te_batch = input_pipeline(filenames_te, batch_size, num_options)
word_embedding = tf.Variable(tf.random_uniform([vocabulary_size + 1, embedding_size],
-1 * np.sqrt(3),
np.sqrt(3)),
trainable=True,
collections=None,
validate_shape=True)
# Input placeholders
if config['dataset'] == 'FloorPlanQA':
X = tf.placeholder(tf.int64, shape=[batch_size, max_num_sen, max_sen_len])
Y = tf.placeholder(tf.float32, shape=[batch_size, num_options, 1])
Ques = tf.placeholder(tf.int64, shape=[batch_size, None])
Ques_emb = tf.nn.embedding_lookup(word_embedding, Ques)
else:
X = tf.placeholder(tf.float32, shape=[batch_size, max_num_sen, max_sen_len])
Y = tf.placeholder(tf.float32, shape=[batch_size, ])
Ques = tf.placeholder(tf.float32, shape=[batch_size, None, embedding_size])
Ques_emb = Ques
X_length = tf.placeholder(tf.int64, shape=[batch_size, max_num_sen])
num_sen = tf.placeholder(tf.int64, shape=[batch_size, ])
mask = tf.placeholder(tf.float32, shape=[batch_size, max_num_sen])
img = tf.placeholder(tf.float32, shape=[batch_size, img_size, img_size, max_num_sen])
img_loss_mask = tf.placeholder(tf.float32, shape=[batch_size])
Ques_length = tf.placeholder(tf.int64, shape=[batch_size])
is_training = tf.placeholder(tf.bool)
dropout_keep = tf.placeholder(tf.float32)
if config['dataset'] == 'ShapeIntersection':
loss_mask = tf.placeholder(tf.float32, shape=[batch_size, img_size, img_size, max_num_sen])
if config['dataset'] == 'FloorPlanQA':
X_emb = tf.nn.embedding_lookup(word_embedding, X)
encoding = _position_encoding(max_sen_len, embedding_size)
X_encoded = tf.reduce_sum(X_emb * encoding, 2)
else:
X_sen_emb_1 = tf.reshape(X, [batch_size * max_num_sen, max_sen_len])
X_sen_emb_2 = tf.contrib.layers.fully_connected(X_sen_emb_1, embedding_size)
X_sen_emb_3 = tf.contrib.layers.fully_connected(X_sen_emb_2, embedding_size, activation_fn=None)
X_encoded = tf.reshape(X_sen_emb_3, [batch_size, max_num_sen, embedding_size])
with tf.variable_scope('X_sen', initializer=tf.contrib.layers.xavier_initializer()):
outputs, _ = tf.nn.bidirectional_dynamic_rnn(tf.contrib.rnn.GRUCell(embedding_size),
tf.contrib.rnn.GRUCell(embedding_size),
X_encoded,
dtype=np.float32,
sequence_length=num_sen)
# f<-> = f-> + f<-
X_des_emb = tf.reduce_sum(tf.stack(outputs), axis=0)
# apply dropout
X_des_emb = tf.nn.dropout(X_des_emb, keep_prob=dropout_keep)
state_X_sen = tf.reshape(X_des_emb, [batch_size * max_num_sen, embedding_size])
initial_val = tf.Variable(tf.zeros([batch_size, img_size, img_size, max_num_sen]), trainable=False)
input_curr = initial_val
if is_dmn == False:
for i in range(max_num_sen):
reuse_var = bool(i)
# attention module to select the correct channels for encoding
with tf.variable_scope('channel_attention', initializer=tf.contrib.layers.xavier_initializer(),
reuse=bool(i - 1)):
# last channel is the all zero channel
input_curr_relevant = tf.slice(input_curr, begin=[0, 0, 0, 0],
size=[batch_size, img_size, img_size, i + 1])
if i == 0:
relevant_image = input_curr_relevant
else:
X_des_emb_relevant = tf.slice(X_des_emb, begin=[0, 0, 0], size=[batch_size, i, embedding_size])
X_des_emb_extra = tf.Variable(tf.zeros([batch_size, 1, embedding_size]), trainable=False)
X_des_emb_relevant_extra = tf.concat([X_des_emb_relevant, X_des_emb_extra], axis=1)
X_des_emb_curr = tf.slice(X_des_emb, begin=[0, i, 0], size=[batch_size, 1, embedding_size])
features = [X_des_emb_relevant_extra * X_des_emb_curr,
tf.abs(X_des_emb_relevant_extra - X_des_emb_curr)]
feature_vec = tf.concat(features, 2)
feature_vec_reshaped = tf.reshape(feature_vec, [batch_size * (i + 1), -1])
attention_values = tf.contrib.layers.fully_connected(feature_vec_reshaped,
embedding_size,
activation_fn=tf.nn.tanh,
reuse=bool(i - 1),
scope="fc1")
attention_values = tf.contrib.layers.fully_connected(attention_values,
1,
activation_fn=None,
reuse=bool(i - 1), scope="fc2")
attention_values_reshaped = tf.reshape(attention_values, [batch_size, (i + 1)])
attention_values_softmax = tf.nn.softmax(attention_values_reshaped)
attention_values_softmax_reshaped = tf.expand_dims(tf.expand_dims(attention_values_softmax, 1), 1)
relevant_image = tf.reduce_sum(input_curr_relevant * attention_values_softmax_reshaped, axis=3,
keep_dims=True)
with tf.variable_scope('img_encoder', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
conv_rep = img_encoder(relevant_image, num_conv_layer, reuse_var=reuse_var)
text_rep = tf.squeeze(tf.slice(X_des_emb, begin=[0, i, 0], size=[batch_size, 1, embedding_size]), axis=1)
features = tf.concat([conv_rep, text_rep], axis=1)
with tf.variable_scope('img_small', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
img_small = layers.fully_connected(features, small_img_size * small_img_size, relu_after=False)
img_small = tf.reshape(img_small, [batch_size, small_img_size, small_img_size, 1])
with tf.variable_scope('img_decoder', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
output_temp = img_decoder(img_small, num_conv_layer, reuse_var=reuse_var)
mask_curr = tf.slice(mask, begin=[0, i], size=[batch_size, 1])
mask_curr = tf.expand_dims(tf.expand_dims(mask_curr, axis=2), axis=3)
output_temp = (output_temp * mask_curr)
padding = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [i, max_num_sen - 1 - i]])
output_temp_expanded = tf.pad(output_temp, paddings=padding)
output_curr = output_temp_expanded + input_curr
input_curr = output_curr
img_new = output_curr
if config['dataset'] == 'FloorPlanQA':
with tf.variable_scope('loss_image'):
loss_img = tf.nn.sigmoid_cross_entropy_with_logits(labels=img, logits=img_new)
mask_modi = tf.expand_dims(tf.expand_dims(mask, 1), 1) * tf.expand_dims(
tf.expand_dims(tf.expand_dims(img_loss_mask, 1), 1), 1)
loss_img = tf.cond(tf.equal((tf.reduce_sum(mask_modi) * img_size * img_size), 0),
lambda: tf.zeros([]),
lambda: tf.reduce_sum(loss_img * mask_modi) / (
tf.reduce_sum(mask_modi) * img_size * img_size))
ones_img = tf.ones(tf.shape(img))
zeros_img = tf.zeros(tf.shape(img))
predicted_img = tf.where(img_new < 0, x=zeros_img, y=ones_img)
correct_prediction = tf.cast(tf.equal(predicted_img, img), tf.float32) * mask_modi
accuracy_img = tf.cond(tf.equal((tf.reduce_sum(mask_modi) * img_size * img_size), 0),
lambda: tf.zeros([]),
lambda: tf.reduce_sum(correct_prediction) / (
tf.reduce_sum(mask_modi) * img_size * img_size))
# adding batch normalization
# For FloorPlanQA we observe that DSMN* performs better without this
if reg == 1:
img_new = tf.reshape(img_new, shape=[batch_size * img_size * img_size * max_num_sen, -1])
img_new = layers.batch_norm(img_new, is_training)
img_new = tf.reshape(img_new, shape=[batch_size, img_size, img_size, max_num_sen])
# the special softmax layer
img_new_sig = tf.sigmoid(img_new)
mask_modi = tf.expand_dims(tf.expand_dims(mask, 1), 1)
img_new_sig_rel = img_new_sig * mask_modi
else:
with tf.variable_scope('loss_image'):
img_created_reshape = tf.reshape(img_new, [-1, 12])
img_reshape = tf.reshape(img, [-1, 12])
loss_mask_temp = loss_mask * tf.expand_dims(tf.expand_dims(tf.expand_dims(img_loss_mask, 1), 1), 1)
loss_mask_reshape = tf.reshape(loss_mask_temp, [-1, 12])
loss_img = 1e2 / per_inter_sup * tf.reduce_mean(
tf.multiply(tf.pow(img_created_reshape - img_reshape, 2),
loss_mask_reshape))
img_new_sig_rel = img_new
accuracy_img = tf.Variable(tf.zeros([]), trainable=False)
else:
loss_img = tf.Variable(tf.zeros([]), trainable=False)
accuracy_img = tf.Variable(tf.zeros([]), trainable=False)
# rnn for question
with tf.variable_scope('Ques_lstm', initializer=tf.contrib.layers.xavier_initializer()):
_, state_Ques = tf.nn.dynamic_rnn(tf.contrib.rnn.GRUCell(embedding_size),
Ques_emb,
dtype=np.float32,
sequence_length=Ques_length
)
# attention module for tagging
# initializing memory
if is_dmn == False:
initial_val = tf.Variable(tf.zeros([batch_size, img_size, img_size, 1]), trainable=False)
mem = initial_val
initial_val_tag = tf.Variable(tf.zeros([batch_size, embedding_size]), trainable=False)
mem_tag = initial_val_tag
state_Ques_expanded = tf.expand_dims(state_Ques, axis=1)
for i in range(num_hops):
reuse_var = bool(i)
con_fea_text = [X_des_emb * state_Ques_expanded,
tf.abs(state_Ques_expanded - X_des_emb),
X_des_emb * tf.expand_dims(mem_tag, axis=1),
tf.abs(X_des_emb - tf.expand_dims(mem_tag, axis=1))]
# extracting the visual features for context
if is_dmn == False:
con_fea_vis_abs = tf.transpose(tf.abs(mem - img_new_sig_rel), perm=[0, 3, 1, 2])
con_fea_vis_abs = tf.reshape(con_fea_vis_abs, [batch_size * max_num_sen, img_size, img_size, 1])
with tf.variable_scope('img_encoder_con_abs', initializer=tf.contrib.layers.xavier_initializer(),
reuse=reuse_var):
con_fea_vis_abs = img_encoder(con_fea_vis_abs, num_conv_layer, reuse_var=reuse_var)
con_fea_vis_mul = tf.transpose(mem * img_new_sig_rel, perm=[0, 3, 1, 2])
con_fea_vis_mul = tf.reshape(con_fea_vis_mul, [batch_size * max_num_sen, img_size, img_size, 1])
with tf.variable_scope('img_encoder_con_mul', initializer=tf.contrib.layers.xavier_initializer(),
reuse=reuse_var):
con_fea_vis_mul = img_encoder(con_fea_vis_mul, num_conv_layer, reuse_var=reuse_var)
con_fea_vis = [tf.reshape(con_fea_vis_abs,
[batch_size, max_num_sen, small_img_size * small_img_size * num_conv_layer]),
tf.reshape(con_fea_vis_mul,
[batch_size, max_num_sen, small_img_size * small_img_size * num_conv_layer])]
else:
con_fea_vis = []
# getting the attention values based on the features
con_fea_vis.extend(con_fea_text)
con_fea = con_fea_vis
con_fea = tf.concat(con_fea, 2)
con_fea = tf.reshape(con_fea, [batch_size * max_num_sen, -1])
with tf.variable_scope('att_val', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
att_val = tf.contrib.layers.fully_connected(con_fea,
embedding_size,
activation_fn=tf.nn.tanh,
reuse=reuse_var,
scope="fc1")
att_val = tf.contrib.layers.fully_connected(att_val,
1,
activation_fn=None,
reuse=reuse_var,
scope="fc2")
att_val = tf.reshape(att_val, [batch_size, max_num_sen])
# the special softmax layer for using attention to get context
att_val = tf.exp(att_val)
att_val = att_val * mask
att_val_smax = att_val / tf.reduce_sum(att_val, axis=1, keep_dims=True)
gru_inputs = tf.concat([X_des_emb, tf.expand_dims(att_val_smax, 2)], 2)
with tf.variable_scope('attention_gru', reuse=reuse_var):
_, con_tag = tf.nn.dynamic_rnn(AttentionGRUCell(embedding_size),
gru_inputs,
dtype=np.float32,
sequence_length=num_sen)
if is_dmn == False:
con = tf.reduce_sum(img_new_sig_rel * tf.expand_dims(tf.expand_dims(att_val_smax, 1), 1),
3, keep_dims=True)
mem_tag_fea_text = [mem_tag, state_Ques, con_tag]
if is_dmn == False:
with tf.variable_scope('img_encoder_con', initializer=tf.contrib.layers.xavier_initializer(),
reuse=reuse_var):
mem_tag_fea_vis = [img_encoder(con, num_conv_layer, reuse_var=reuse_var)]
else:
mem_tag_fea_vis = []
# getting the new memory tag
mem_tag_fea_text.extend(mem_tag_fea_vis)
mem_tag_fea = mem_tag_fea_text
mem_tag_fea = tf.concat(mem_tag_fea, 1)
with tf.variable_scope('mem_tag' + str(i), initializer=tf.contrib.layers.xavier_initializer(), reuse=None):
mem_tag = layers.fully_connected(mem_tag_fea, embedding_size, relu_after=True)
if is_dmn == False:
# getting new memory
mem_fea_text = [mem_tag]
with tf.variable_scope('img_encoder' + str(i), initializer=tf.contrib.layers.xavier_initializer(),
reuse=None):
mem_fea_vis = [img_encoder(mem, num_conv_layer, reuse_var=None)]
mem_fea_text.extend(mem_fea_vis)
mem_fea = mem_fea_text
mem_fea = tf.concat(mem_fea, axis=1)
with tf.variable_scope('mem_small', initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse_var):
mem_small = layers.fully_connected(mem_fea, small_img_size * small_img_size, relu_after=False)
mem_small = tf.reshape(mem_small, [batch_size, small_img_size, small_img_size, 1])
with tf.variable_scope('img_decoder' + str(i), initializer=tf.contrib.layers.xavier_initializer(),
reuse=None):
mem = img_decoder(mem_small, num_conv_layer, reuse_var=None)
# applying batch_normalization and sigmoid to the created memory
mem = tf.reshape(mem, shape=[batch_size * img_size * img_size * 1, -1])
with tf.variable_scope('mem_bn' + str(i)):
mem = layers.batch_norm(mem, is_training)
mem = tf.reshape(mem, shape=[batch_size, img_size, img_size, 1])
mem = tf.sigmoid(mem)
if is_dmn == False:
final_image = mem
with tf.variable_scope('img_encoder_final', initializer=tf.contrib.layers.xavier_initializer(), reuse=None):
conv_rep = img_encoder(final_image, num_conv_layer, reuse_var=None)
if is_dmn == False:
if abl_number == 1:
features = tf.concat([conv_rep, mem_tag, state_Ques], axis=1)
elif abl_number == 2:
features = tf.concat([mem_tag, state_Ques], axis=1)
else:
features = tf.concat([conv_rep, state_Ques], axis=1)
else:
features = tf.concat([mem_tag, state_Ques], axis=1)
# apply dropout
features = tf.nn.dropout(features, keep_prob=dropout_keep)
Y_squeezed = tf.squeeze(Y)
with tf.variable_scope('Classification'):
with tf.variable_scope('fc1', initializer=tf.contrib.layers.xavier_initializer()):
fc1_out = layers.fully_connected(input_x=features, ouput_dim=num_options, relu_after=False)
if config['dataset'] == 'FloorPlanQA':
# loss caculation
score = fc1_out
loss_acc = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y_squeezed, logits=score))
# accuracy calculation
Y_class = tf.argmax(Y_squeezed, axis=1)
Y_pred_class = tf.argmax(score, axis=1)
correct_prediction = tf.equal(Y_class, Y_pred_class)
accuracy_acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
else:
# loss calculation
Y_out = tf.reshape(fc1_out, (batch_size,))
loss_acc = tf.reduce_mean(tf.pow(Y_out - Y, 2))
accuracy_acc = tf.Variable(tf.zeros([]), trainable=False)
loss_reg = 0
# add l2 regularization for all variables except biases
for v in tf.trainable_variables():
if not 'bias' in v.name.lower():
loss_reg += tf.nn.l2_loss(v)
if is_dmn == False:
loss = (reg * loss_acc) + ((1 - reg) * loss_img) + (l2_reg * loss_reg)
else:
loss = loss_acc + (l2_reg * loss_reg)
# tensorboard summaries
tf.summary.scalar('loss', loss, collections=['train'])
tf.summary.scalar('loss_acc', loss_acc, collections=['train'])
tf.summary.scalar('loss_reg', loss_reg, collections=['train'])
tf.summary.scalar('accuracy_acc', accuracy_acc, collections=['train'])
if is_dmn == False:
tf.summary.scalar('loss_img', loss_img, collections=['train'])
tf.summary.scalar('accuracy_img', accuracy_img, collections=['train'])
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# some additional summaries
if config['dataset'] == 'FloorPlanQA':
complete_accuracy_acc = tf.placeholder(tf.float32, shape=[])
complete_accuracy_img = tf.placeholder(tf.float32, shape=[])
tf.summary.scalar("complete_accuracy_acc", complete_accuracy_acc,
collections=['validation', 'test', 'validation_f'])
tf.summary.scalar("complete_accuracy_img", complete_accuracy_img,
collections=['validation', 'test', 'validation_f', ])
else:
complete_loss = tf.placeholder(tf.float32, shape=[])
complete_img_loss = tf.placeholder(tf.float32, shape=[])
tf.summary.scalar("complete_loss", complete_loss, collections=['validation', 'test', 'validation_f'])
tf.summary.scalar("complete_img_loss", complete_img_loss, collections=['validation', 'test', 'validation_f', ])
# merging all summaries in one node
merged_tr = tf.summary.merge_all('train')
merged_va = tf.summary.merge_all('validation')
merged_te = tf.summary.merge_all('test')
merged_va_f = tf.summary.merge_all('validation_f')
saver = tf.train.Saver()
chkpoint_dir = save_path + '/' + config['model'] + '_' + config['dataset'] + '_' \
+ str(lstm_size) + '_' + str(embedding_size) + '_' \
+ str(learning_rate) + '_' + str(batch_size) + '_' \
+ str(reg) + '_' + str(num_conv_layer) + '_' \
+ str(run) + '_' + str(num_epochs) + '_' \
+ str(early_stopping_epoch) + '_' + str(dropout_reg) + '_' \
+ str(l2_reg) + '_' + str(num_hops) + '_' \
+ str(abl_number) + '_' + str(per_inter_sup)
with tf.Session() as sess:
# making the necessary files
if not os.path.exists(chkpoint_dir):
os.mkdir(chkpoint_dir)
os.mkdir(chkpoint_dir + '/train')
os.mkdir(chkpoint_dir + '/test')
os.mkdir(chkpoint_dir + '/validation')
os.mkdir(chkpoint_dir + '/validation_f')
# setting up tensorboard writers
train_writer = tf.summary.FileWriter(chkpoint_dir + '/train', sess.graph)
validation_writer = tf.summary.FileWriter(chkpoint_dir + '/validation')
test_writer = tf.summary.FileWriter(chkpoint_dir + '/test')
validation_f_writer = tf.summary.FileWriter(chkpoint_dir + '/validation_f')
# graph initialization
init_op1 = tf.global_variables_initializer()
sess.run(init_op1)
init_opt2 = tf.local_variables_initializer()
sess.run(init_opt2)
if config['dataset'] == 'FloorPlanQA':
evaluate_FloorPlanQA(sess, train_writer, test_writer, validation_writer, validation_f_writer, chkpoint_dir)
else:
evaluate_ShapeIntersection(sess, train_writer, test_writer, validation_writer, validation_f_writer,
chkpoint_dir)