-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.yml
31 lines (30 loc) · 1.54 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
services:
app:
build:
context: .
dockerfile: Dockerfile
container_name: instructlab
runtime: nvidia
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
volumes:
- ./volumes/taxonomy:/root/.local/share/instructlab/taxonomy
- ./volumes/models:/root/.cache/instructlab/models
- ./volumes/checkpoints:/root/.local/share/instructlab/checkpoints
- ./volumes/datasets:/root/.local/share/instructlab/datasets
working_dir: /workspace
stdin_open: true # Mantém o terminal aberto para interatividade
tty: true # Necessário para o bash interativo
env_file:
- .env # <-- Adicionando o arquivo .env aqui
environment:
# Testada Variavel para allocar memoria CUDA com Split, nao funcionou, o erro :
# torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 388.00 MiB. GPU 0 has a total capacity of 8.00 GiB of which 0 bytes is free. Including non-PyTorch memory, this process has 17179869184.00 GiB memory in use. Of the allocated memory 37.87 GiB is allocated by PyTorch, and 102.37 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
# Persistiu
#- PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128
- NVIDIA_VISIBLE_DEVICES=all