forked from amirbitran/dbfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_log_files.py
166 lines (127 loc) · 5.64 KB
/
read_log_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Reads data in log files.
Sample instance: python read_log_files.py --directory=../1igd/MultiUmbrella17 --output_filename='Test.dat'
"""
import numpy as np
import os
import pickle
#import os.path
import joblib
import glob
import argparse
##############################################################################
# First, read the file
##############################################################################
parser = argparse.ArgumentParser(description='Hi')
parser.add_argument("--directory", help = 'This is the path to the directory containing the PDB files we want to analyze...' )
parser.add_argument("--temperatures", default = "*.***", type = str, help = "Temperatures at which you want to run analysis, as a comma-separated string with no spaces. For instnace you can type --temperatures='0.800, 0.900' or --temperatures = '0.8**' or --temperatures='*.***', the latter being the default ")
parser.add_argument("--variables", default = "natives,energy,rmsd", type = str, help = "Variables you want to read, as a comma-separated string with no spaces. Default is 'natives,energy,rmsd'")
parser.add_argument("--step_multiples", default = "1", type = str, help = "Read only MC steps that are a multiple of this")
parser.add_argument("--min_step", default = '0', help = 'minimum MC step to analyze. Defaults to 0.')
parser.add_argument("--max_step", default = 'inf', help = 'maximum MC step to analyze. Defaults to infinity.')
parser.add_argument("--output_filename", default = "Equilibium_scores.dat", help = "A file with this name, which contains the log file data, will be saved in directory. Defaults to Equilibrium_scores.dat ")
args = parser.parse_args()
directory = args.directory
variables = [item for item in args.variables.split(',')]
step_multiples_to_read = int(args.step_multiples)
min_step=float(args.min_step)
max_step=float(args.max_step)
filename = args.output_filename
def get_temp(filename):
splitline=filename.split(sep='/')
split2=splitline[2].split('_')
#print(split2)
while split2[1][0] not in '0123456789':
del split2[1]
temp=float(split2[1][0:5])
print(temp)
return temp
def read_file(PDB_files, variables):
"""
PDB_files actually means log_files...lol sorry
variables is a list of variables that you want to read from the log files, but they need to be called
exactly what they are called in the first line of the log file
for instance, 'energy', 'natives', etc...
Returns a 3D array data where data[i,j,k] corresponds to log_file i, time j within that log file, and variable k (in case you care about multiple variables like energies, natives, etc)
"""
data=[]
lens=[]
variable_indices=[]
times=[]
temperatures=[]
setpoints=[]
for filecounter, filename in enumerate(PDB_files):
step_index=0
print("Reading file {}".format(filename))
openfile=open(filename)
data.append([])
#energies.append([])
#contacts.append([])
#rmsd.append([])
#temperatures.append(float(temp))
# file 1 variable 1 times variable 2 times
#data=[ [ [ x1, x2, x3 ... ], [y1, y2, y3... ],... ] ]
for line in openfile.readlines():
line=line.rstrip('\n')
if len(line)>0:
entries=line.split()
if 'step #' in line:
fields = ['step'] + line.split()[2:]
#print(fields)
temperature_index=fields.index('temp')
if 'setpoint' in fields:
setpoint_index=fields.index('setpoint')
else:
setpoint_index=np.nan
for variable in variables:
variable_indices.append(fields.index(variable))
data[filecounter].append([])
#print(variable_indices)
if entries[0]=='STEP':
if np.mod(int(entries[1]), step_multiples_to_read)==0 and int(entries[1])>=min_step and int(entries[1])<max_step:
step_index+=1
if filecounter==0:
times.append(int(entries[1]))
#print(entries[variable_indices[1]+1])
if step_index==1: #learn what reporter values we currently have...only need to do this once per log file
temperatures.append(float(entries[temperature_index+1][0:5]))
if 'setpoint' in fields:
setpoints.append(float(entries[setpoint_index+1]))
else:
setpoints.append(0)
for v, variable in enumerate(variables):
data[filecounter][v].append(float(entries[variable_indices[v]+1]))
lens.append(len(data[filecounter][0]))
data[filecounter]=np.array(data[filecounter])
#if filecounter==0:
# print(data[0][1,:])
x=np.zeros((1, len(data[filecounter][0]), len(data[filecounter])))
for v in range(len(variables)):
x[0,:,v]=data[filecounter][v,:]
data[filecounter]=x
#if filecounter==0:
# print(data[filecounter][0,:,1])
nonzero_lengths = [i for i in range(len(lens)) if lens[i]>0]
data = [x for i, x in enumerate(data) if i in nonzero_lengths]
lens = [l for i, l in enumerate(lens) if i in nonzero_lengths]
data=np.vstack((x[:, 0:min(lens), :] for x in data))
#print(data[0,:,1])
#We have created an array data that is files (i.e. conditions) by timepoints by variables
return data, temperatures, setpoints, np.array(times)
All_files=glob.glob('{}/*.log'.format(directory))
log_files=[]
if args.temperatures!='*.***':
temperatures = [float(item) for item in args.temperatures.split(',')]
for file in All_files:
#print(file)
if get_temp(file)==temperature:
print(file)
log_files.append(file)
else:
log_files=All_files
#print (PDB_files)
print('Reading files')
data, temperatures, setpoints, times=read_file(log_files, variables)
#print(data[0,:,1])
print("Saving data")
joblib.dump([data, variables, log_files, temperatures, setpoints, times],"{}/{}".format(directory, filename))