forked from psych251/problem_sets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeta-analysis_exercise.qmd
125 lines (89 loc) · 2.61 KB
/
meta-analysis_exercise.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
title: "Meta-Analysis Demo"
author: "Psych 251"
date: "10/27/2020"
output: html
---
# Preliminaries
Packages needed for the class example.
```{r packages}
library(tidyverse)
library(metafor)
library(here)
```
You'd need to run this next chunk if you wanted to re-download the data from MetaLab, which would also mean installing the `metalabr` package (commented out).
```{r data, eval=FALSE}
# devtools::install_github("langcog/metalabr")
library(metalabr)
ml_dataset_info <- get_metalab_dataset_info()
d <- get_metalab_data(filter(ml_dataset_info, short_name == "mutex"))
d %>%
select(
long_cite, short_cite, expt_num, n, d_calc, d_var_calc,
mean_age_months, year
) %>%
filter(mean_age_months <= 24) %>% # subset for ease
write_csv(here("data/mutex.csv"))
```
Load in the pre-cached data.
```{r dataloading}
d <- read_csv(here("data/mutex.csv"))
```
# Basic descriptives
Always take a look at the data first.
```{r examine}
head(d)
```
The effect sizes are in `d_calc` (for Cohen's $d$, calculated from the data).
```{r hist}
ggplot(d, aes(x = d_calc)) +
geom_histogram(binwidth = .25) +
xlab("Effect Size (d)")
```
Since these are developmental data, we can plot them against age.
```{r ageplot}
ggplot(d, aes(x = mean_age_months, y = d_calc)) +
geom_point(aes(size = n), alpha = .5) +
geom_smooth(method = "lm") +
xlab("Mean age (months)") +
ylab("Effect size (d)") +
geom_hline(lty = 2, yintercept = 0)
```
# Meta-analysis
Random effects meta-analysis - this is the default for `metafor`. The main command for metafor is `rma` - that's like the `lm` or `lmer` of the package.
```{r ranef}
random_effects_mod <- rma(
yi = d_calc, vi = d_var_calc,
slab = short_cite, data = d
)
summary(random_effects_mod)
```
For kicks, try fixed effects.
```{r fixef}
# look up the documentation for rma and figure out how to do this!
```
# Forest plot
`metafor` also lets you create forest plots.
```{r forest-ranef}
forest(random_effects_mod)
```
Compare to the forest plot for the fixed effects model.
```{r forest-fixef}
```
# Funnel plot
A funnel plot can be used to diagnose publication bias (though it's not the most sensitive way to do so).
```{r funnel}
funnel(random_effects_mod)
```
# Meta-regression
Meta-regression asks whether study-level covariates (like say year of publication or average age of kids) are related to the effect size.
```{r metareg-age}
meta_reg_model <- rma(
yi = d_calc, vi = d_var_calc, mods = ~mean_age_months,
slab = short_cite, data = d
)
summary(meta_reg_model)
```
Try asking if publication `year` is a significant meta-regressor.
```{r metareg-year}
```