forked from guicho271828/latplan
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstrips.py
executable file
·344 lines (316 loc) · 12.6 KB
/
strips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python3
import config
import numpy as np
import numpy.random as random
from latplan.model import default_networks
from latplan.util import curry
from latplan.util.tuning import grid_search, nn_task
from latplan.util.noise import gaussian
import scipy.misc as misc
import keras.backend as K
import tensorflow as tf
HARD_CODED_DATASET = 'new_datasets/Binary_800x150/'
float_formatter = lambda x: "%.5f" % x
np.set_printoptions(formatter={'float_kind':float_formatter})
encoder = 'fc'
mode = 'learn_dump'
# default values
default_parameters = {
'lr' : 0.0001,
'batch_size' : 2000,
'full_epoch' : 1000,
'epoch' : 1000,
'max_temperature' : 5.0,
'min_temperature' : 0.7,
'M' : 2,
'optimizer' : 'adam',
}
def select(data,num):
return data[random.randint(0,data.shape[0],num)]
def dump_autoencoding_image(ae,test,train):
if 'plot' not in mode:
return
rz = np.random.randint(0,2,(6,ae.parameters['N']))
ae.plot_autodecode(rz,"autodecoding_random.png",verbose=True)
ae.plot(select(test,6),"autoencoding_test.png",verbose=True)
ae.plot(select(train,6),"autoencoding_train.png",verbose=True)
def dump_autoencoding_image_if_necessary(ae,test,train):
if 'learn' not in mode:
dump_autoencoding_image(ae,test,train)
def dump_all_actions(ae,configs,trans_fn,name="all_actions.csv",repeat=1):
if 'dump' not in mode:
return
l = len(configs)
batch = 5000
loop = (l // batch) + 1
try:
print(ae.local(name))
with open(ae.local(name), 'wb') as f:
for i in range(repeat):
for begin in range(0,loop*batch,batch):
end = begin + batch
print((begin,end,len(configs)))
transitions = trans_fn(configs[begin:end])
orig, dest = transitions[0], transitions[1]
orig_b = ae.encode_binary(orig,batch_size=1000).round().astype(int)
dest_b = ae.encode_binary(dest,batch_size=1000).round().astype(int)
actions = np.concatenate((orig_b,dest_b), axis=1)
np.savetxt(f,actions,"%d")
except AttributeError:
print("this AE does not support dumping")
except KeyboardInterrupt:
print("dump stopped")
def dump_actions(ae,transitions,name="actions.csv",repeat=1):
if 'dump' not in mode:
return
try:
print(ae.local(name))
with open(ae.local(name), 'wb') as f:
orig, dest = transitions[0], transitions[1]
for i in range(repeat):
orig_b = ae.encode_binary(orig,batch_size=1000).round().astype(int)
dest_b = ae.encode_binary(dest,batch_size=1000).round().astype(int)
actions = np.concatenate((orig_b,dest_b), axis=1)
np.savetxt(f,actions,"%d")
except AttributeError:
print("this AE does not support dumping")
except KeyboardInterrupt:
print("dump stopped")
import subprocess
def dump_all_states(ae,configs,states_fn,name="all_states.csv",repeat=1):
if 'dump' not in mode:
return
l = len(configs)
batch = 5000
loop = (l // batch) + 1
try:
print(ae.local(name))
with open(ae.local(name), 'wb') as f:
for i in range(repeat):
for begin in range(0,loop*batch,batch):
end = begin + batch
print((begin,end,len(configs)))
states = states_fn(configs[begin:end])
states_b = ae.encode_binary(states,batch_size=1000).round().astype(int)
np.savetxt(f,states_b,"%d")
except AttributeError:
print("this AE does not support dumping")
except KeyboardInterrupt:
print("dump stopped")
def dump_states(ae,states,name="states.csv",repeat=1):
if 'dump' not in mode:
return
try:
print(ae.local(name))
with open(ae.local(name), 'wb') as f:
for i in range(repeat):
np.savetxt(f,ae.encode_binary(states,batch_size=1000).round().astype(int),"%d")
except AttributeError:
print("this AE does not support dumping")
except KeyboardInterrupt:
print("dump stopped")
import subprocess
################################################################
# note: lightsout has epoch 200
def run(path,train,test,parameters):
if 'learn' in mode:
from latplan.util import curry
ae, _, _ = grid_search(curry(nn_task, default_networks[encoder], path,
train, train, gaussian(test), test), # noise data is used for tuning metric
default_parameters,
parameters,
report = lambda ae: ae.report(train, train, test, test),
report_best = lambda ae: dump_autoencoding_image(ae,test,train))
ae.save()
else:
ae = default_networks[encoder](path).load()
return ae
def show_summary(ae,train,test):
if 'summary' in mode:
ae.summary()
ae.report(train, test, train, test)
################################################################
def puzzle(type='mnist',width=3,height=3,N=36,num_examples=6500):
parameters = {
'layer' :[1000],# [400,4000],
'clayer' :[16],# [400,4000],
'dropout' :[0.4], #[0.1,0.4],
'noise' :[0.4],
'N' :[N], #[25,49],
'dropout_z' :[False],
'activation' :['tanh'],
'full_epoch' :[150],
'epoch' :[150],
'batch_size' :[4000],
'lr' :[0.001],
}
import importlib
p = importlib.import_module('latplan.puzzles.puzzle_{}'.format(type))
p.setup()
configs = p.generate_configs(width*height)
configs = np.array([ c for c in configs ])
assert len(configs) >= num_examples
print(len(configs))
random.shuffle(configs)
transitions = p.transitions(width,height,configs[:num_examples],one_per_state=True)
states = np.concatenate((transitions[0], transitions[1]), axis=0)
print(states.shape)
train = states[:int(len(states)*0.9)]
test = states[int(len(states)*0.9):]
ae = run("_".join(map(str,("samples/puzzle",type,width,height,N,num_examples,encoder))), train, test, parameters)
show_summary(ae, train, test)
dump_autoencoding_image_if_necessary(ae,test[:1000],train[:1000])
dump_actions(ae,transitions)
dump_states (ae,states)
dump_all_actions(ae,configs, lambda configs: p.transitions(width,height,configs),)
dump_all_states(ae,configs, lambda configs: p.states(width,height,configs),)
def hanoi(disks=7,towers=4,N=36,num_examples=6500):
parameters = {
'layer' :[1000],# [400,4000],
'clayer' :[12],# [400,4000],
'dropout' :[0.6], #[0.1,0.4],
'noise' :[0.4],
'N' :[N], #[25,49],
'dropout_z' :[False],
'activation' : ['tanh'],
'full_epoch' :[1000],
'epoch' :[1000],
'lr_epoch' :[0.5],
'batch_size' :[500],
'optimizer' :['adam'],
'lr' :[0.001],
}
print("this setting is tuned for conv")
import latplan.puzzles.hanoi as p
configs = p.generate_configs(disks,towers)
configs = np.array([ c for c in configs ])
assert len(configs) >= num_examples
print(len(configs))
random.shuffle(configs)
transitions = p.transitions(disks,towers,configs[:num_examples],one_per_state=True)
states = np.concatenate((transitions[0], transitions[1]), axis=0)
print(states.shape)
train = states[:int(len(states)*0.9)]
test = states[int(len(states)*0.9):]
ae = run("_".join(map(str,("samples/hanoi",disks,towers,N,num_examples,encoder))), train, test, parameters)
print("*** NOTE *** if l_rec is above 0.01, it is most likely not learning the correct model")
show_summary(ae, train, test)
dump_autoencoding_image_if_necessary(ae,test[:1000],train[:1000])
dump_actions(ae,transitions,repeat=100)
dump_states (ae,states,repeat=100)
dump_all_actions(ae,configs, lambda configs: p.transitions(disks,towers,configs),repeat=100)
dump_all_states(ae,configs, lambda configs: p.states(disks,towers,configs),repeat=100)
def load_dataset(path, n=10000):
from os import listdir
from os.path import isfile, join
onlyfiles = [f for f in listdir(path) if isfile(join(path, f))]
datalist = [];
counter = 0;
for d in onlyfiles:
print(d)
d = path+d
datalist.append(misc.imread(d.split(" ")[0]))
counter += 1;
if counter == n: break;
return datalist
#Real hanoi, not using generator to avoid modificaitons in the run method
def hanoi_real(disks=7,towers=4,N=36,num_examples=6500):
parameters = {
'layer' :[1000],# [400,4000],
'clayer' :[12],# [400,4000],
'dropout' :[0.6], #[0.1,0.4],
'noise' :[0.4],
'N' :[N], #[25,49],
'dropout_z' :[False],
'activation' : ['tanh'],
'full_epoch' :[1000],
'epoch' :[1000],
'lr_epoch' :[0.01],
'batch_size' :[500],
'optimizer' :['adam'],
'lr' :[0.001],
}
print("this setting is tuned for conv")
import latplan.puzzles.hanoi as p
configs = load_dataset(HARD_CODED_DATASET)
assert len(configs) >= num_examples
print(len(configs))
random.shuffle(configs)
#return
#transitions = p.transitions(disks,towers,configs[:num_examples],one_per_state=True)
#states = np.concatenate((transitions[0], transitions[1]), axis=0)
states = np.array(configs)
print(states.shape)
train = states[:int(len(states)*0.9)]
test = states[int(len(states)*0.9):]
print(len(train),len(test))
ae = run("_".join(map(str,("samples/hanoi_real_new",disks,towers,N,num_examples,encoder))), train, test, parameters)
print("*** NOTE *** if l_rec is above 0.01, it is most likely not learning the correct model")
show_summary(ae, train, test)
dump_autoencoding_image_if_necessary(ae,test[:1000],train[:1000])
#dump_actions(ae,transitions,repeat=100)
dump_states (ae,states,repeat=1)
#dump_all_actions(ae,configs, lambda configs: p.transitions(disks,towers,configs),repeat=100)
dump_all_states(ae,configs, lambda configs: states,repeat=1)
def lightsout(type='digital',size=4,N=36,num_examples=6500):
parameters = {
'layer' :[1000],# [400,4000],
'clayer' :[16],# [400,4000],
'dropout' :[0.4], #[0.1,0.4],
'noise' :[0.4],
'N' :[N], #[25,49],
'dropout_z' :[False],
'activation' : ['tanh'],
'full_epoch' :[100],
'epoch' :[100],
'batch_size' :[2000],
'lr' :[0.001],
}
import importlib
p = importlib.import_module('latplan.puzzles.lightsout_{}'.format(type))
configs = p.generate_configs(size)
configs = np.array([ c for c in configs ])
assert len(configs) >= num_examples
print(len(configs))
random.shuffle(configs)
transitions = p.transitions(size,configs[:num_examples],one_per_state=True)
states = np.concatenate((transitions[0], transitions[1]), axis=0)
print(states.shape)
train = states[:int(len(states)*0.9)]
test = states[int(len(states)*0.9):]
ae = run("_".join(map(str,("samples/lightsout",type,size,N,num_examples,encoder))), train, test, parameters)
show_summary(ae, train, test)
dump_autoencoding_image_if_necessary(ae,test[:1000],train[:1000])
dump_actions(ae,transitions)
dump_states (ae,states)
dump_all_actions(ae,configs, lambda configs: p.transitions(size,configs),)
dump_all_states(ae,configs, lambda configs: p.states(size,configs),)
def main():
global encoder, mode
import sys
if len(sys.argv) == 1:
print({ k for k in default_networks})
gs = globals()
print({ k for k in gs if hasattr(gs[k], '__call__')})
else:
print('args:',sys.argv)
sys.argv.pop(0)
encoder = sys.argv.pop(0)
if encoder not in default_networks:
raise ValueError("invalid encoder!: {}".format(encoder))
task = sys.argv.pop(0)
mode = sys.argv.pop(0)
def myeval(str):
try:
return eval(str)
except:
return str
globals()[task](*map(myeval,sys.argv))
def set_globals(enc, md):
global encoder, mode
if enc not in default_networks:
raise ValueError("invalid encoder!: {}".format(enc))
encoder = enc
mode = md
if __name__ == '__main__':
main()