-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_images.py
109 lines (90 loc) · 4.51 KB
/
check_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# */AIPND-revision/intropyproject-classify-pet-images/check_images.py
#
# TODO 0: Add your information below for Programmer & Date Created.
# PROGRAMMER: Anand Siva P V
# DATE CREATED: 21-Nov-2022
# REVISED DATE: 25-Nov-2022
# PURPOSE: Classifies pet images using a pretrained CNN model, compares these
# classifications to the true identity of the pets in the images, and
# summarizes how well the CNN performed on the image classification task.
# Note that the true identity of the pet (or object) in the image is
# indicated by the filename of the image. Therefore, your program must
# first extract the pet image label from the filename before
# classifying the images using the pretrained CNN model. With this
# program we will be comparing the performance of 3 different CNN model
# architectures to determine which provides the 'best' classification.
#
# Use argparse Expected Call with <> indicating expected user input:
# python check_images.py --dir <directory with images> --arch <model>
# --dogfile <file that contains dognames>
# Example call:
# python check_images.py --dir pet_images/ --arch vgg --dogfile dognames.txt
##
# Imports python modules
from time import time, sleep
# Imports print functions that check the lab
from print_functions_for_lab_checks import *
# Imports functions created for this program
from get_input_args import get_input_args
from get_pet_labels import get_pet_labels
from classify_images import classify_images
from adjust_results4_isadog import adjust_results4_isadog
from calculates_results_stats import calculates_results_stats
from print_results import print_results
# Main program function defined below
def main():
# Collect start time to measure total program runtime
start_time = time()
# Defines get_input_args function within the file get_input_args.py
# Retrieves 3 Command Line Arugments from user as input from a terminal window.
in_arg = get_input_args()
# Function that checks command line arguments using in_arg
check_command_line_arguments(in_arg)
# Defines get_pet_labels function within the file get_pet_labels.py
# Creates the results dictionary that contains the results,
# this dictionary is returned from the function call as the variable results
results = get_pet_labels(in_arg.dir)
# Function that checks Pet Images in the results Dictionary using results
check_creating_pet_image_labels(results)
# Defines classify_images function within the file classiy_images.py
# Creates Classifier Labels with classifier function, Compares Labels,
# and adds these results to the results dictionary - results
classify_images(in_arg.dir, results, in_arg.arch)
# Function that checks Results Dictionary using results
check_classifying_images(results)
# Defines adjust_results4_isadog function within the file adjust_results4_isadog.py
# Adjusts the results dictionary to determine if classifier correctly
# classified images as 'a dog' or 'not a dog'. This demonstrates if
# model can correctly classify dog images as dogs (regardless of breed)
adjust_results4_isadog(results, in_arg.dogfile)
# Function that checks Results Dictionary for is-a-dog adjustment using results
check_classifying_labels_as_dogs(results)
# Defines calculates_results_stats function within the file calculates_results_stats.py
# Calculates results of run and puts statistics in the Results Statistics
# Dictionary - called results_stats
results_stats = calculates_results_stats(results)
# Function that checks Results Statistics Dictionary using results_stats
check_calculating_results(results, results_stats)
# Defines print_results function within the file print_results.py
# Prints summary results, incorrect classifications of dogs (if requested)
# and incorrectly classified breeds (if requested)
print_results(results, results_stats, in_arg.arch, True, True)
# Collects end time
end_time = time()
# Computes overall runtime in seconds & prints it in hh:mm:ss format
tot_time = (
end_time - start_time
) # calculate difference between end time and start time
print(
"\n** Total Elapsed Runtime:",
str(int((tot_time / 3600)))
+ ":"
+ str(int((tot_time % 3600) / 60))
+ ":"
+ str(int((tot_time % 3600) % 60)),
)
# Call to main function to run the program
if __name__ == "__main__":
main()