-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
459 lines (392 loc) · 23.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import warnings
warnings.filterwarnings("ignore")
import os
import cv2
os.environ['CUBLAS_WORKSPACE_CONFIG']=':4096:8'
import datetime
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import optim
from pathlib import Path
from metric import calc_dice,calc_hf
from tqdm import tqdm
from torchvision import transforms
from Nets.Unet.unet_model import UNet
from tool import *
from metric import dice_and_hf
import random
import os
import pandas as pd
from tool import structure_loss
def predict_with_prompt(args, logger, directory=None,parts=None):
predictor = load_model(args)
args.input_channels=4 if args.four_channel else 3
print(f"channels:{args.input_channels}")
net = UNet(n_channels=args.input_channels, n_classes=args.nclasses, bilinear=args.bilinear)
net.train()
net.cuda()
optimizer = optim.AdamW(net.parameters(), lr=args.lr, weight_decay=0.0005)
batch_images = []
batch_masks = []
alphas=[]
sub_sample_names=[]
sub_parts=[]
mean_alphas=[]
last = {"part": [], "sample_names": [], "final_dice": []}
if args.calc_raw_dice:
raw_dices=[]
if args.dice_percent <1:
gt_percent_queue=[]
for idx, part in enumerate(parts):
image_path = f"./TestDatasets/{directory}/{part}/images"
mask_path = f"./TestDatasets/{directory}/{part}/masks"
#create save path
predict_path = f"{args.result_path}/{part}"
Path(predict_path).mkdir(parents=True, exist_ok=True)
view_path = f"{args.result_path}/view/{part}"
Path(view_path).mkdir(parents=True, exist_ok=True)
noise_path = f"{args.result_path}/noise/{part}"
Path(noise_path).mkdir(parents=True, exist_ok=True)
sample_names_list =[i for i in sorted(os.listdir(image_path)) if i != ".ipynb_checkpoints"]
if args.dice_percent <1:
count=0
if args.calc_new:
new_raw_dice_list=[]
new_raw_hf_list=[]
for index, sample_name in tqdm(enumerate(sample_names_list), desc=f"{part}"):
flag= index%args.interval==0 #the ratio of using mask 1/1 1/2 1/4 default 1/1
retval, _, stats,centroids, mask = calc_information(os.path.join(mask_path, sample_name)) # [h,w,1] 0-1 ndarray
image_raw=cv2.imread(os.path.join(image_path, sample_name))
image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB) # [h,w,3] [0,255] ndarray
image_h, image_w = image.shape[:2]
predictor.set_image(image)
pre_merge = np.zeros(image.shape, dtype=np.float32) # [h,w,3] 0-1 ndarray
# pre_count=np.zeros(image.shape, dtype=np.float32)
if args.dice_percent <1 or args.calc_raw_dice :
raw_merge = np.zeros((image.shape[0],image.shape[1],1), dtype=np.float32) # [h,w,1] 0-1 ndarray
crop_image_queue = [] # [h,w,3] [0,255] nadarray
crop_predict_queue = [] # [h,w,1] 0-1 nadarray
crop_predict_sigmoid_queue=[] #[h,w,1] 0~1 ndarray
crop_mask_queue = [] # [h,w,1] 0-1 nadarray
unet_predict_queue = [] # [h,w,1] 0-1 ndarray
crop_bbox_queue=[] #int
crop_merge_queue = [] #0~1 ndarray
crop_predict_logist_queue=[]
unet_logist_queue=[]
#core
for i in range(retval):
if args.prompt=="bbox":
x1, y1, x2, y2 = stats[i][0], stats[i][1], stats[i][0] + stats[i][2], stats[i][1] + stats[i][3]
tiny_width =x2-x1
tiny_height=y2-y1
if args.prompt_noise>0 and args.prompt_noise_type=="lrud":
print(f"{args.prompt_noise_type}")
seed1=random.random()
if seed1>=0 and seed1<0.5:
x1 = max(0, int(x1 - args.prompt_noise * tiny_width))
x2 = x1 + tiny_width
else:
x2 = min(image_w, int(x2 + args.prompt_noise * tiny_width))
x1 = x2 - tiny_width
seed2=random.random()
if seed2>=0 and seed2<0.5:
y1 = max(0, int(y1 - args.prompt_noise * tiny_height))
y2 = y1 + tiny_height
else:
y2 = min(image_h, int(y2 + args.prompt_noise * tiny_height))
y1 = y2 - tiny_height
input_bbox = np.array([[x1, y1, x2, y2]])
pred_raw, _, _ = predictor.predict(box=input_bbox, multimask_output=False, return_logits=True)
pred = torch.from_numpy(pred_raw).sigmoid().permute(1, 2, 0).numpy().astype(np.float32) # [0~1] ndarray
# if args.dice_percent <1 or args.calc_raw_dice :
# raw_merge+= pred
# ########################################################
# if args.noise >0 and args.noise_type=="dilation":
# print("add noise")
# kernel_size = int(min(y2 - y1, x2 - x1) * args.noise)
# kernel = np.ones((kernel_size, kernel_size), np.uint8)
# noise_mask = cv2.dilate(mask[y1:y2, x1:x2], kernel, iterations=1)
# crop_mask_queue.append(noise_mask[:,:,None])
# noise_sample_merged=np.concatenate([mask[y1:y2, x1:x2,0], noise_mask], axis=1)
# cv2.imwrite(os.path.join(noise_path, sample_name), noise_sample_merged*255)
# else:
# crop_mask_queue.append(mask[y1:y2, x1:x2])
# crop_image_queue.append(image[y1:y2, x1:x2])
# crop_bbox_queue.append([x1, y1, x2, y2])
# crop_predict_sigmoid_queue.append(pred[y1:y2, x1:x2])
# crop_predict_logist_queue.append(torch.from_numpy(pred_raw).permute(1, 2, 0).numpy().astype(np.float32)[y1:y2, x1:x2])
# pred_mask = (pred > 0.5).astype(np.float32)
# crop_predict_queue.append(pred_mask[y1:y2, x1:x2])
else:
input_point = np.array([centroids[i]])
input_label = np.array([1])
pred_raw, _, _ = predictor.predict(point_coords=input_point, point_labels=input_label,multimask_output=False, return_logits=True)
pred = torch.from_numpy(pred_raw).sigmoid().permute(1, 2, 0).numpy().astype(np.float32) # [0~1] ndarray
if args.dice_percent <1 or args.calc_raw_dice :
raw_merge+=pred
temp_full = morphology.convex_hull_image(binary(pred[:, :, 0]))
temp_full = np.array(temp_full, dtype=np.uint8) * 255
_, _, pred_stats, _, _ = calc_predict_information(temp_full)
x1, y1, x2, y2 = pred_stats[0][0], pred_stats[0][1], pred_stats[0][0] + pred_stats[0][2], pred_stats[0][1] + pred_stats[0][3]
tiny_width=x2-x1
tiny_height=y2-y1
x1 = max(0, int(x1 - tiny_width* 0.1))
x2 = min(image_w, int(x2 + tiny_width* 0.1))
y1 = max(0, int(y1 - tiny_height * 0.1))
y2 = min(image_h, int(y2 + tiny_height* 0.1))
# crop_mask_queue.append(mask[y1:y2, x1:x2])
# crop_image_queue.append(image[y1:y2, x1:x2])
# crop_bbox_queue.append([x1, y1, x2, y2])
# crop_predict_sigmoid_queue.append(pred[y1:y2, x1:x2])
# crop_predict_logist_queue.append(torch.from_numpy(pred_raw).permute(1, 2, 0).numpy().astype(np.float32)[y1:y2, x1:x2])
# pred_mask = (pred > 0.5).astype(np.float32)
# crop_predict_queue.append(pred_mask[y1:y2, x1:x2])
if args.dice_percent < 1 or args.calc_raw_dice:
raw_merge += pred
########################################################
if args.noise > 0 and args.noise_type == "dilation" :
print("add noise dilation")
kernel_size = int(min(y2 - y1, x2 - x1) * args.noise)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
noise_mask = cv2.dilate(mask[y1:y2, x1:x2], kernel, iterations=1)
crop_mask_queue.append(noise_mask[:, :, None])
###############################################################################################
noise_sample_merged = np.concatenate([mask[y1:y2, x1:x2, 0], noise_mask], axis=1)
cv2.imwrite(os.path.join(noise_path, sample_name), noise_sample_merged * 255)
################################################################################################
elif args.noise>0 and args.noise_type == "erosion" :
print("add noise erosion")
kernel_size = int(min(y2 - y1, x2 - x1) * args.noise)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
noise_mask = cv2.erode(mask[y1:y2, x1:x2], kernel, iterations=1)
crop_mask_queue.append(noise_mask[:, :, None])
###############################################################################################
noise_sample_merged = np.concatenate([mask[y1:y2, x1:x2, 0], noise_mask], axis=1)
cv2.imwrite(os.path.join(noise_path, sample_name), noise_sample_merged * 255)
################################################################################################
elif args.noise>0 and args.noise_type == "both" :
print("add noise erosion or dilation")
kernel_size = int(min(y2 - y1, x2 - x1) * args.noise)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
if random.random()<0.5:
noise_mask = cv2.erode(mask[y1:y2, x1:x2], kernel, iterations=1)
else:
noise_mask = cv2.dilate(mask[y1:y2, x1:x2], kernel, iterations=1)
crop_mask_queue.append(noise_mask[:, :, None])
###############################################################################################
noise_sample_merged = np.concatenate([mask[y1:y2, x1:x2, 0], noise_mask], axis=1)
cv2.imwrite(os.path.join(noise_path, sample_name), noise_sample_merged * 255)
################################################################################################
else:
crop_mask_queue.append(mask[y1:y2, x1:x2])
crop_image_queue.append(image[y1:y2, x1:x2])
crop_bbox_queue.append([x1, y1, x2, y2])
crop_predict_sigmoid_queue.append(pred[y1:y2, x1:x2]) # [h,w,
crop_predict_logist_queue.append(torch.from_numpy(pred_raw).permute(1, 2, 0).numpy().astype(np.float32)[y1:y2, x1:x2])
pred_mask = (pred > 0.5).astype(np.float32)
crop_predict_queue.append(pred_mask[y1:y2, x1:x2])
if args.calc_raw_dice:
raw_dice=calc_dice(binary(raw_merge),mask)
raw_dices.append(round(raw_dice,4))
if args.calc_new:
raw_hf=calc_hf(binary(raw_merge),mask)
new_raw_dice_list.append(round(raw_dice,4))
new_raw_hf_list.append(round(raw_hf,2))
if args.dice_percent <1:
new_dice=calc_dice(binary(raw_merge),mask)
flag=flag and (new_dice<=args.dice_percent)
count=count+1 if flag else count
for i in range(len(crop_image_queue)):
crop_image = crop_image_queue[i]
if args.four_channel:
fourth_channel = crop_predict_queue[i].astype(np.uint8) * 255
crop_image = np.concatenate([crop_image, fourth_channel], axis=2)
height = crop_image.shape[0]
width = crop_image.shape[1]
optimizer.zero_grad()
if args.four_channel:
# trans = transforms.Compose([transforms.ToPILImage(),
# transforms.Resize((args.crop_image_size, args.crop_image_size)),
# transforms.ToTensor(),
# transforms.Normalize([0, 0, 0,0.5], [1,1,1,1])
# ])
trans = transforms.Compose([transforms.ToPILImage(),
transforms.Resize((args.crop_image_size, args.crop_image_size)),
transforms.ToTensor()
])
else:
trans = transforms.Compose([transforms.ToPILImage(),
transforms.Resize((args.crop_image_size, args.crop_image_size)),
transforms.ToTensor()
])
crop_image = trans(crop_image).unsqueeze(0).cuda()
crop_mask=cv2.resize(crop_mask_queue[i],(args.crop_image_size, args.crop_image_size))
crop_mask=(crop_mask >= 0.5).astype(np.float32)
crop_mask = torch.from_numpy(crop_mask)[None,:,:] # [1,h,w]
crop_mask = crop_mask.unsqueeze(0)
crop_mask = crop_mask.cuda()
if flag:
if len(batch_images) < args.nums:
batch_images.append(crop_image)
batch_masks.append(crop_mask)
else:
batch_images.pop(0)
batch_images.append(crop_image)
batch_masks.pop(0)
batch_masks.append(crop_mask)
crop_image_new = torch.cat(batch_images, dim=0)
output = net(crop_image_new)
temp_output = output[-1, :, :, :].unsqueeze(0).detach()
temp_output = F.interpolate(temp_output, mode="bilinear", size=(height, width))
unet_predict_queue.append(temp_output.detach().cpu().sigmoid().squeeze(0).permute(1,2,0).numpy()) # 0~1 ndarray [h,w,1]
unet_logist_queue.append(temp_output.detach().cpu().squeeze(0).permute(1,2,0).numpy())
crop_mask_new = torch.cat(batch_masks, dim=0)
loss = structure_loss(output, crop_mask_new)
loss.backward()
optimizer.step()
else:
if len(batch_images) and len(batch_masks):
crop_image_new = torch.cat(batch_images, dim=0)
output = net(crop_image_new)
crop_mask_new = torch.cat(batch_masks, dim=0)
loss = structure_loss(output, crop_mask_new)
loss.backward()
optimizer.step()
with torch.no_grad():
output = net(crop_image)
temp_output = output[-1, :, :, :].unsqueeze(0)
temp_output = F.interpolate(temp_output, mode="bilinear", size=(height, width))
unet_predict_queue.append(temp_output.detach().cpu().sigmoid().squeeze(0).permute(1, 2, 0).numpy()) # 0~1 ndarray [h,w,1]
unet_logist_queue.append(temp_output.detach().cpu().squeeze(0).permute(1, 2, 0).numpy())
for i in range(len(crop_image_queue)):
best_alpha=1
best_dice=0
for a in [round(g,2) for g in np.arange(0,args.alpha_percent+0.01,0.05).tolist()]:
temp = a *crop_predict_logist_queue[i] + (1-a) * unet_logist_queue[i]
temp=torch.from_numpy(temp).sigmoid().numpy()
temp_dice=calc_dice(temp,crop_mask_queue[i])
if temp_dice>best_dice:
best_alpha=a
best_dice=temp_dice
alphas.append(best_alpha)
if len(alphas)<=args.alpha_num:
temp_merge=crop_predict_sigmoid_queue[i]
mean_alphas.append(1)
else:
mean_a=sum(alphas[-1-args.alpha_num:-1])/args.alpha_num
temp_merge=(mean_a) *crop_predict_logist_queue[i] + (1-mean_a) * unet_logist_queue[i]
temp_merge = torch.from_numpy(temp_merge).sigmoid().numpy()
mean_alphas.append(mean_a)
crop_merge_queue.append(temp_merge)
fix, ax = plt.subplots(2, 4)
ax[0, 0].set_title("image")
ax[0, 0].imshow(crop_image_queue[i]) # 原图
ax[0, 0].axis("off")
ax[0, 1].set_title("sam")
ax[0, 1].imshow(crop_predict_sigmoid_queue[i], cmap="gray") # sam图像
ax[0, 1].axis("off")
ax[0, 2].set_title("other_net")
ax[0, 2].imshow(unet_predict_queue[i], cmap="gray") # unet图像
ax[0, 2].axis("off")
ax[0, 3].set_title("final_result")
ax[0, 3].imshow(temp_merge, cmap="gray")
ax[0, 3].axis("off")
ax[1, 0].set_title("mask")
ax[1, 0].imshow(crop_mask_queue[i], cmap="gray")
ax[1, 0].axis("off")
ax[1, 1].set_title("sam_bin")
ax[1, 1].imshow(binary(crop_predict_sigmoid_queue[i]), cmap="gray")
ax[1, 1].axis("off")
ax[1, 2].set_title("other_net_bin")
ax[1, 2].imshow(binary(unet_predict_queue[i]), cmap="gray")
ax[1, 2].axis("off")
ax[1, 3].set_title("final_result_bin")
ax[1, 3].imshow(binary(temp_merge), cmap="gray")
ax[1, 3].axis("off")
temp_sample_name = sample_name.split(".")[0] + ".jpg"
plt.savefig(f"{view_path}/{i}_{temp_sample_name}")
sub_sample_names.append(f"{i}_{temp_sample_name}")
sub_parts.append(part)
plt.close("all")
for i in range(len(crop_image_queue)):
x1, y1, x2, y2 = crop_bbox_queue[i]
pre_merge[y1:y2, x1:x2, :] = pre_merge[y1:y2, x1:x2, :] + binary(crop_merge_queue[i])
# pre_merge[y1:y2, x1:x2, :] = pre_merge[y1:y2, x1:x2, :] + crop_merge_queue[i]
# pre_count[y1:y2, x1:x2,:] += 1
# pre_count[pre_count == 0] = 1
# pre_merge=pre_merge/pre_count
pre_merge=binary(pre_merge)
final_dice=calc_dice(pre_merge[:,:,0],mask[:,:,0])
last["part"].append(part)
last["sample_names"].append(sample_name)
last["final_dice"].append( round(final_dice,4))
cv2.imwrite(os.path.join(predict_path, sample_name), pre_merge*255)
if args.calc_new:
logger.info(f"new_raw_dice_{part},{round(sum(new_raw_dice_list)/len(new_raw_dice_list),4)}")
logger.info(f"new_raw_hf_{part},{round(sum(new_raw_hf_list)/len(new_raw_hf_list),2)}")
if args.dice_percent <1:
gt_percent_queue.append(count/len(sample_names_list))
logger.info(f"gt_percent_{part},{count/len(sample_names_list)}")
if args.dice_percent <1:
logger.info(f"total_gt_percent:,{sum(gt_percent_queue)/len(gt_percent_queue)}")
logger.info(gt_percent_queue)
alpha_dataframe=pd.DataFrame({"sub_parts":sub_parts,"sub_sample_names":sub_sample_names,"best_alphas":alphas,"mean_alphas":mean_alphas})
save_alpha_path=f"{args.model_name}_{directory}_alpha.csv" if args.directory=="Polyp" else f"{args.model_name}_{directory}_{part}_alpha.csv"
alpha_dataframe.to_csv(os.path.join(args.result_path, save_alpha_path),index=False)
if args.calc_raw_dice:
last["raw_dice"]=raw_dices
final_dice_dataframe=pd.DataFrame(last)
save_dice_path = f"{args.model_name}_{directory}_dice.csv" if args.directory == "Polyp" else f"{args.model_name}_{directory}_{part}_dice.csv"
final_dice_dataframe.to_csv(os.path.join(args.result_path, save_dice_path),index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--alpha_num",type=int,default=5,help="initial alpha nums")
parser.add_argument("--result_path", type=str, default="./result")
parser.add_argument("--nclasses", default=1, type=int)
parser.add_argument("--calc_raw_dice",type=bool,default=True,help="calculate the dice between SAM predict and mask ")
parser.add_argument("--seed", type=int, default=1234)
parser.add_argument("--lr", type=float, default=0.0005)
parser.add_argument("--crop_image_size", type=int, default=128,help="resize crop image size ")
parser.add_argument("--alpha_percent", type=float, default=1, help="0~1")
parser.add_argument("--bilinear",action="store_true")
parser.add_argument("--calc_new", type=bool, default=False)
parser.add_argument("--interval",type=int,default=1)
parser.add_argument("--dice_percent",type=float,default=1,help="when dice < dice_percent then using mask [0.85,0.9]")
parser.add_argument("--nums", type=int, default=32, help="queue length")
parser.add_argument("--model_name", default="MedSAM_bbox", type=str,help="choose from SAM,MedSAM_bbox,MedSAM_point")
parser.add_argument("--directory", type=str, default="Polyp")
parser.add_argument("--parts", type=str,nargs="+",default=["CVC-ClinicDB","CVC-ColonDB","ETIS-LaribPolypDB", "Kvasir", "CVC-300"])
parser.add_argument("--prompt",type=str,default="bbox",help="choose from [point|bbox]")
parser.add_argument("--four_channel",type=int,default=1,help="1 stand for use 0 stand for not use" )
#HE noise
parser.add_argument("--noise", type=float, default=0,help="0.05|0.1|0")
parser.add_argument("--noise_type", type=str, default="dilation",help="dilatin|erosion|both")
#prompt noise
parser.add_argument("--prompt_noise",type=float,default=0,help="0.05|0")
parser.add_argument("--prompt_noise_type",type=str,default="none",help="none|lrud")
# directory = "BUSI"
# "benign","malignant"
# directory = "GlaS"
# "benign", "malignant"
# directory="Polyp"
# "CVC-ClinicDB","CVC-ColonDB","ETIS-LaribPolypDB", "Kvasir", "CVC-300"
# directory="fluidchallenge"
# "cirrus","topcon","spectralis"
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
# torch.backends.cudnn.deterministic = True
exp_path=f"exp_{datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')}"
args.result_path = f"{args.result_path}/{exp_path}_dir[{args.directory}]_mode[{args.model_name}]_queue[{args.nums}]_prompt[{args.prompt}]_dicePercent[{args.dice_percent}]_interval[{args.interval}]_fourChannel[{args.four_channel}]_bilinear[{args.bilinear}]_{args.noise_type}_noise[{args.noise}]_promptNoise[{args.prompt_noise}]_promptNoiseType[{args.prompt_noise_type}]"
Path(args.result_path).mkdir(parents=True, exist_ok=True)
logger = get_logger(log_path=f"{args.result_path}/log.txt")
print_args(args,logger)
predict_with_prompt(args=args, logger=logger, directory=args.directory, parts=args.parts)
dice_and_hf(args, logger, args.directory, args.parts)
print(exp_path)