-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathFindCorners.cpp
612 lines (554 loc) · 21.2 KB
/
FindCorners.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#include "stdafx.h"
#include "FindCorners.h"
FindCorners::FindCorners()
{}
FindCorners::~FindCorners()
{}
FindCorners::FindCorners(Mat img)
{
radius.push_back(4);
radius.push_back(8);
radius.push_back(12);
templateProps.push_back(Point2f((float)0, (float)CV_PI / 2));
templateProps.push_back(Point2f((float)CV_PI / 4, (float)-CV_PI / 4));
templateProps.push_back(Point2f((float)0, (float)CV_PI / 2));
templateProps.push_back(Point2f((float)CV_PI / 4, (float)-CV_PI / 4));
templateProps.push_back(Point2f((float)0, (float)CV_PI / 2));
templateProps.push_back(Point2f((float)CV_PI / 4, (float)-CV_PI / 4));
}
//正态分布
float FindCorners::normpdf(float dist, float mu, float sigma){
return exp(-0.5*(dist - mu)*(dist - mu) / (sigma*sigma)) / (std::sqrt(2 * CV_PI)*sigma);
}
//**************************生成核*****************************//
//angle代表核类型:45度核和90度核
//kernelSize代表核大小(最终生成的核的大小为kernelSize*2+1)
//kernelA...kernelD是生成的核
//*************************************************************************//
void FindCorners::createkernel(float angle1, float angle2, int kernelSize, Mat &kernelA, Mat &kernelB, Mat &kernelC, Mat &kernelD){
int width = (int)kernelSize * 2 + 1;
int height = (int)kernelSize * 2 + 1;
kernelA = cv::Mat::zeros(height, width, CV_32F);
kernelB = cv::Mat::zeros(height, width, CV_32F);
kernelC = cv::Mat::zeros(height, width, CV_32F);
kernelD = cv::Mat::zeros(height, width, CV_32F);
for (int u = 0; u<width; ++u){
for (int v = 0; v<height; ++v){
float vec[] = { u - kernelSize, v - kernelSize };//相当于将坐标原点移动到核中心
float dis = std::sqrt(vec[0] * vec[0] + vec[1] * vec[1]);//相当于计算到中心的距离
float side1 = vec[0] * (-sin(angle1)) + vec[1] * cos(angle1);//相当于将坐标原点移动后的核进行旋转,以此产生四种核
float side2 = vec[0] * (-sin(angle2)) + vec[1] * cos(angle2);//X=X0*cos+Y0*sin;Y=Y0*cos-X0*sin
if (side1 <= -0.1&&side2 <= -0.1){
kernelA.ptr<float>(v)[u] = normpdf(dis, 0, kernelSize / 2);
}
if (side1 >= 0.1&&side2 >= 0.1){
kernelB.ptr<float>(v)[u] = normpdf(dis, 0, kernelSize / 2);
}
if (side1 <= -0.1&&side2 >= 0.1){
kernelC.ptr<float>(v)[u] = normpdf(dis, 0, kernelSize / 2);
}
if (side1 >= 0.1&&side2 <= -0.1){
kernelD.ptr<float>(v)[u] = normpdf(dis, 0, kernelSize / 2);
}
}
}
//std::cout << "kernelA:" << kernelA << endl << "kernelB:" << kernelB << endl
// << "kernelC:" << kernelC<< endl << "kernelD:" << kernelD << endl;
//归一化
kernelA = kernelA / cv::sum(kernelA)[0];
kernelB = kernelB / cv::sum(kernelB)[0];
kernelC = kernelC / cv::sum(kernelC)[0];
kernelD = kernelD / cv::sum(kernelD)[0];
}
//**************************//获取最小值*****************************//
//*************************************************************************//
void FindCorners::getMin(Mat src1, Mat src2, Mat &dst){
//src1和src2的大小要一样
//if (src1.size() != src2.size())
//{
// cout << "The size of matrix don't match" << endl;
//}
//dst = Mat::zeros(src1.size(), src1.type());
//for (int i = 0; i < src1.rows; i++)
//{
// for (int j = 0; j < src1.cols; j++)
// {
// dst.ptr<float>(i)[j] = src1.ptr<float>(i)[j] <= src2.ptr<float>(i)[j] ? src1.ptr<float>(i)[j] : src2.ptr<float>(i)[j];
// }
//}
int rowsLeft = src1.rows;
int colsLeft = src1.cols;
int rowsRight = src2.rows;
int colsRight = src2.cols;
if (rowsLeft != rowsRight || colsLeft != colsRight)return;
int channels = src1.channels();
int nr = rowsLeft;
int nc = colsLeft;
if (src1.isContinuous()){
nc = nc*nr;
nr = 1;
//std::cout<<"continue"<<std::endl;
}
for (int i = 0; i<nr; i++){
const float* dataLeft = src1.ptr<float>(i);
const float* dataRight = src2.ptr<float>(i);
float* dataResult = dst.ptr<float>(i);
for (int j = 0; j<nc*channels; ++j){
dataResult[j] = (dataLeft[j]<dataRight[j]) ? dataLeft[j] : dataRight[j];
}
}
}
//**************************//获取最大值*****************************//
//*************************************************************************//
void FindCorners::getMax(Mat src1, Mat src2, Mat &dst){
//src1和src2的大小要一样
//if (src1.size() != src2.size())
//{
// cout << "The size of matrix don't match" << endl;
//}
//dst = Mat::zeros(src1.size(), src1.type());
//for (int i = 0; i < src1.cols; i++)
//{
// const float* dataLeft = src1.ptr<float>(i);
// const float* dataRight = src2.ptr<float>(i);
// float* dataResult = dst.ptr<float>(i);
// for (int j = 0; j < src1.rows; j++)
// {
// dataResult[j] = (dataLeft[j] >= dataRight[j]) ? dataLeft[j] : dataRight[j];
// }
//}
//(没搞明白,只是换了种写法就不行了,就只能进行一次最大值的获取了。。)
int rowsLeft = src1.rows;
int colsLeft = src1.cols;
int rowsRight = src2.rows;
int colsRight = src2.cols;
if (rowsLeft != rowsRight || colsLeft != colsRight)return;
int channels = src1.channels();
int nr = rowsLeft;
int nc = colsLeft;
if (src1.isContinuous()){
nc = nc*nr;
nr = 1;
//std::cout<<"continue"<<std::endl;
}
for (int i = 0; i<nr; i++){
const float* dataLeft = src1.ptr<float>(i);
const float* dataRight = src2.ptr<float>(i);
float* dataResult = dst.ptr<float>(i);
for (int j = 0; j<nc*channels; ++j){
dataResult[j] = (dataLeft[j] >= dataRight[j]) ? dataLeft[j] : dataRight[j];
}
}
}
//获取梯度角度和权重
void FindCorners::getImageAngleAndWeight(Mat img, Mat &imgDu, Mat &imgDv, Mat &imgAngle, Mat &imgWeight){
Mat sobelKernel(3, 3, CV_32F);
Mat sobelKernelTrs(3, 3, CV_32F);
//soble滤波器算子核
sobelKernel.col(0).setTo(cv::Scalar(-1));
sobelKernel.col(1).setTo(cv::Scalar(0));
sobelKernel.col(2).setTo(cv::Scalar(1));
sobelKernelTrs = sobelKernel.t();
filter2D(img, imgDu, CV_32F, sobelKernel);
filter2D(img, imgDv, CV_32F, sobelKernelTrs);
if (imgDu.size() != imgDv.size())return;
for (int i = 0; i < imgDu.rows; i++)
{
float* dataDv = imgDv.ptr<float>(i);
float* dataDu = imgDu.ptr<float>(i);
float* dataAngle = imgAngle.ptr<float>(i);
float* dataWeight = imgWeight.ptr<float>(i);
for (int j = 0; j < imgDu.cols; j++)
{
if (dataDu[j]>0.000001)
{
dataAngle[j] = atan2((float)dataDv[j], (float)dataDu[j]);
if (dataAngle[j] < 0)dataAngle[j] = dataAngle[j] + CV_PI;
else if (dataAngle[j] > CV_PI)dataAngle[j] = dataAngle[j] - CV_PI;
}
dataWeight[j] = std::sqrt((float)dataDv[j] * (float)dataDv[j] + (float)dataDu[j] * (float)dataDu[j]);
}
}
}
//**************************非极大值抑制*****************************//
//inputCorners是输入角点,outputCorners是非极大值抑制后的角点
//threshold是设定的阈值
//margin是进行非极大值抑制时检查方块与输入矩阵边界的距离,patchSize是该方块的大小
//*************************************************************************//
void FindCorners::nonMaximumSuppression(Mat& inputCorners, vector<Point>& outputCorners, float threshold, int margin, int patchSize)
{
if (inputCorners.size <= 0)
{
cout << "The imput mat is empty!" << endl; return;
}
for (int i = margin + patchSize; i < inputCorners.cols - (margin + patchSize); i = i + patchSize + 1)//移动检查方块,每次移动一个方块的大小
{
for (int j = margin + patchSize; j < inputCorners.rows - (margin + patchSize); j = j + patchSize + 1)
{
float maxVal = inputCorners.ptr<float>(j)[i];
int maxX = i; int maxY = j;
for (int m = i; m < i + patchSize +1; m++)//找出该检查方块中的局部最大值
{
for (int n = j; n < j + patchSize +1; n++)
{
float temp = inputCorners.ptr<float>(n)[m];
if (temp>maxVal)
{
maxVal = temp; maxX = m; maxY = n;
}
}
}
if (maxVal < threshold)continue;//若该局部最大值小于阈值则不满足要求
int flag = 0;
for (int m = maxX - patchSize; m < min(maxX + patchSize, inputCorners.cols-margin); m++)//二次检查
{
for (int n = maxY - patchSize; n < min(maxY + patchSize, inputCorners.rows - margin); n++)
{
if (inputCorners.ptr<float>(n)[m]>maxVal && (m<i || m>i + patchSize || n<j || n>j + patchSize))
{
flag = 1; break;
}
}
if (flag)break;
}
if (flag)continue;
outputCorners.push_back(Point(maxX, maxY));
std::vector<float> e1(2, 0.0);
std::vector<float> e2(2, 0.0);
cornersEdge1.push_back(e1);
cornersEdge2.push_back(e2);
}
}
}
//find modes of smoothed histogram
void FindCorners::findModesMeanShift(vector<float> hist, vector<float> &hist_smoothed, vector<pair<float, int>> &modes, float sigma){
//efficient mean - shift approximation by histogram smoothing
//compute smoothed histogram
bool allZeros = true;
for (int i = 0; i < hist.size(); i++)
{
float sum = 0;
for (int j = -(int)round(2 * sigma); j <= (int)round(2 * sigma); j++)
{
int idx = 0;
if ((i + j) < 0)idx = i + j + hist.size();
else if ((i + j) >= 32)idx = i + j - hist.size();
else idx = (i + j);
sum = sum + hist[idx] * normpdf(j, 0, sigma);
}
hist_smoothed[i]=sum;
if (abs(hist_smoothed[i] - hist_smoothed[0])>0.0001)allZeros = false;// check if at least one entry is non - zero
//(otherwise mode finding may run infinitly)
}
if (allZeros)return;
//mode finding
//for (int i = 0; i < hist.size(); i++)
//{
// int j = i;
// while (true)
// {
// float h0 = hist_smoothed[j];
// int j1 = (j - 1)<0 ? j - 1 + hist.size() : j - 1;
// j1 = j>hist.size() ? j - 1 - hist.size() : j - 1;
// int j2 = (j + 1)>hist.size() - 1 ? j + 1 - hist.size() : j + 1;
// j2 = (j + 1)<0 ? j + 1 + hist.size() : j + 1;
// float h1 = hist_smoothed[j1];
// float h2 = hist_smoothed[j2];
// if (h1 >= h0&&h1 >= h2)j = j1;
// else if (h2 >= h0&&h2 >= h1)j = j2;
// else break;
// }
// if (modes.size() == 0 || modes[i].x!=(float)j)
// {
// }
//}
for (int i = 0; i<hist.size(); ++i){
int j = i;
int curLeft = (j - 1)<0 ? j - 1 + hist.size() : j - 1;
int curRight = (j + 1)>hist.size() - 1 ? j + 1 - hist.size() : j + 1;
if (hist_smoothed[curLeft]<hist_smoothed[i] && hist_smoothed[curRight]<hist_smoothed[i]){
modes.push_back(std::make_pair(hist_smoothed[i], i));
}
}
std::sort(modes.begin(), modes.end());
}
//estimate edge orientations
void FindCorners::edgeOrientations(Mat imgAngle, Mat imgWeight, int index){
//number of bins (histogram parameter)
int binNum = 32;
//convert images to vectors
if (imgAngle.size() != imgWeight.size())return;
vector<float> vec_angle, vec_weight;
for (int i = 0; i < imgAngle.cols; i++)
{
for (int j = 0; j < imgAngle.rows; j++)
{
// convert angles from normals to directions
float angle = imgAngle.ptr<float>(j)[i] + CV_PI / 2;
angle = angle>CV_PI ? (angle - CV_PI) : angle;
vec_angle.push_back(angle);
vec_weight.push_back(imgWeight.ptr<float>(j)[i]);
}
}
//create histogram
vector<float> angleHist(binNum, 0);
for (int i = 0; i < vec_angle.size(); i++)
{
int bin = max(min((int)floor(vec_angle[i] / (CV_PI / binNum)), binNum - 1), 0);
angleHist[bin] = angleHist[bin] + vec_weight[i];
}
// find modes of smoothed histogram
vector<float> hist_smoothed(angleHist);
vector<std::pair<float, int> > modes;
findModesMeanShift(angleHist, hist_smoothed, modes,1);
// if only one or no mode = > return invalid corner
if (modes.size() <= 1)return;
//extract 2 strongest modes and compute orientation at modes
std::pair<float, int> most1 = modes[modes.size() - 1];
std::pair<float, int> most2 = modes[modes.size() - 2];
float most1Angle = most1.second*CV_PI / binNum;
float most2Angle = most2.second*CV_PI / binNum;
float tmp = most1Angle;
most1Angle = (most1Angle>most2Angle) ? most1Angle : most2Angle;
most2Angle = (tmp>most2Angle) ? most2Angle : tmp;
// compute angle between modes
float deltaAngle = min(most1Angle - most2Angle, most2Angle + (float)CV_PI - most1Angle);
// if angle too small => return invalid corner
if (deltaAngle <= 0.3)return;
//set statistics: orientations
cornersEdge1[index][0] = cos(most1Angle);
cornersEdge1[index][1] = sin(most1Angle);
cornersEdge2[index][0] = cos(most2Angle);
cornersEdge2[index][1] = sin(most2Angle);
}
//亚像素精度找角点
void FindCorners::refineCorners(vector<Point> &cornors, Mat imgDu, Mat imgDv, Mat imgAngle, Mat imgWeight, float radius){
// image dimensions
int width = imgDu.cols;
int height = imgDu.rows;
// for all corners do
for (int i = 0; i < cornors.size(); i++)
{
//extract current corner location
int cu = cornors[i].x;
int cv = cornors[i].y;
// estimate edge orientations
int startX, startY, ROIwidth, ROIheight;
startX = max(cu - radius, (float)0);
startY = max(cv - radius, (float)0);
ROIwidth = min(cu + radius, (float)width-1) - startX ;
ROIheight = min(cv + radius, (float)height-1) - startY ;
Mat roiAngle, roiWeight;
roiAngle = imgAngle(Rect(startX, startY, ROIwidth, ROIheight));
roiWeight = imgWeight(Rect(startX, startY, ROIwidth, ROIheight));
edgeOrientations(roiAngle, roiWeight,i);
// continue, if invalid edge orientations
if (cornersEdge1[i][0] == 0 && cornersEdge1[i][1] == 0 || cornersEdge2[i][0] == 0 && cornersEdge2[i][1] == 0)continue;
}
}
//compute corner statistics
void FindCorners::cornerCorrelationScore(Mat img, Mat imgWeight, vector<Point2f> cornersEdge, float &score){
//center
int c[] = { imgWeight.cols / 2, imgWeight.cols / 2 };
//compute gradient filter kernel(bandwith = 3 px)
Mat img_filter = Mat::ones(imgWeight.size(), imgWeight.type());
img_filter = img_filter*-1;
for (int i = 0; i < imgWeight.cols; i++)
{
for (int j = 0; j < imgWeight.rows; j++)
{
Point2f p1 = Point2f(i - c[0], j - c[1]);
Point2f p2 = Point2f(p1.x*cornersEdge[0].x*cornersEdge[0].x + p1.y*cornersEdge[0].x*cornersEdge[0].y,
p1.x*cornersEdge[0].x*cornersEdge[0].y + p1.y*cornersEdge[0].y*cornersEdge[0].y);
Point2f p3 = Point2f(p1.x*cornersEdge[1].x*cornersEdge[1].x + p1.y*cornersEdge[1].x*cornersEdge[1].y,
p1.x*cornersEdge[1].x*cornersEdge[1].y + p1.y*cornersEdge[1].y*cornersEdge[1].y);
float norm1 = sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
float norm2 = sqrt((p1.x - p3.x)*(p1.x - p3.x) + (p1.y - p3.y)*(p1.y - p3.y));
if (norm1 <= 1.5 || norm2 <= 1.5)
{
img_filter.ptr<float>(j)[i] = 1;
}
}
}
//normalize
Mat mean, std, mean1, std1;
meanStdDev(imgWeight, mean, std);
meanStdDev(img_filter, mean1, std1);
for (int i = 0; i < imgWeight.cols; i++)
{
for (int j = 0; j < imgWeight.rows; j++)
{
imgWeight.ptr<float>(j)[i] = (float)(imgWeight.ptr<float>(j)[i] - mean.ptr<double>(0)[0]) / (float)std.ptr<double>(0)[0];
img_filter.ptr<float>(j)[i] = (float)(img_filter.ptr<float>(j)[i] - mean1.ptr<double>(0)[0]) / (float)std1.ptr<double>(0)[0];
}
}
//convert into vectors
vector<float> vec_filter, vec_weight;
for (int i = 0; i < imgWeight.cols; i++)
{
for (int j = 0; j < imgWeight.rows; j++)
{
vec_filter.push_back(img_filter.ptr<float>(j)[i]);
vec_weight.push_back(imgWeight.ptr<float>(j)[i]);
}
}
//compute gradient score
float sum = 0;
for (int i = 0; i < vec_weight.size(); i++)
{
sum += vec_weight[i] * vec_filter[i];
}
sum = (float)sum / (float)(vec_weight.size() - 1);
float score_gradient = sum >= 0 ? sum : 0;
//create intensity filter kernel
Mat kernelA, kernelB, kernelC, kernelD;
createkernel(atan2(cornersEdge[0].y, cornersEdge[0].x), atan2(cornersEdge[1].y, cornersEdge[1].x), c[0], kernelA, kernelB, kernelC, kernelD);//1.1 产生四种核
//checkerboard responses
float a1, a2,b1,b2;
a1 = kernelA.dot(img);
a2 = kernelB.dot(img);
b1 = kernelC.dot(img);
b2 = kernelD.dot(img);
float mu = (a1 + a2 + b1 + b2) / 4;
float score_a = (a1 - mu) >= (a2 - mu) ? (a2 - mu) : (a1 - mu);
float score_b = (mu - b1) >= (mu - b2) ? (mu - b2) : (mu - b1);
float score_1 = score_a >= score_b ? score_b : score_a;
score_b = (b1 - mu) >= (b2 - mu) ? (b2 - mu) : (b1 - mu);
score_a = (mu - a1) >= (mu - a2) ? (mu - a2) : (mu - a1);
float score_2 = score_a >= score_b ? score_b : score_a;
float score_intensity = score_1 >= score_2 ? score_1 : score_2;
score = score_gradient*score_intensity;
}
//score corners
void FindCorners::scoreCorners(Mat img, Mat imgAngle, Mat imgWeight, vector<Point> &cornors, vector<int> radius, vector<float> &score){
//for all corners do
for (int i = 0; i < cornors.size(); i++)
{
//corner location
int u = cornors[i].x;
int v = cornors[i].y;
if (i == 278)
{
int aaa = 0;
}
//compute corner statistics @ radius 1
vector<float> scores;
for (int j = 0; j < radius.size(); j++)
{
scores.push_back(0);
int r = radius[j];
if (u > r&&u <= (img.cols - r - 1) && v>r && v <= (img.rows - r -1))
{
int startX, startY, ROIwidth, ROIheight;
startX = u-r;
startY = v-r;
ROIwidth = 2 * r + 1;
ROIheight = 2 * r + 1;
Mat sub_img = img(Rect(startX, startY, ROIwidth, ROIheight));
Mat sub_imgWeight = imgWeight(Rect(startX, startY, ROIwidth, ROIheight));
vector<Point2f> cornersEdge;
cornersEdge.push_back(Point2f((float)cornersEdge1[i][0], (float)cornersEdge1[i][1]));
cornersEdge.push_back(Point2f((float)cornersEdge2[i][0], (float)cornersEdge2[i][1]));
cornerCorrelationScore(sub_img, sub_imgWeight, cornersEdge, scores[j]);
}
}
//take highest score
score.push_back(*max_element(begin(scores), end(scores)));
}
}
void FindCorners::detectCorners(Mat &Src, vector<Point> &resultCornors, float scoreThreshold){
Mat gray, imageNorm;
gray = Mat(Src.size(), CV_8U);
if (Src.channels()==3)
{
cvtColor(Src, gray, COLOR_BGR2GRAY);//变为灰度图
}
else gray = Src.clone();
normalize(gray, imageNorm, 0, 1, cv::NORM_MINMAX, CV_32F);//对灰度图进行归一化
Mat imgCorners = Mat::zeros(imageNorm.size(), CV_32F);//卷积核得出的点
for (int i = 0; i < 6; i++)
{
//按照论文步骤,第一步:用卷积核进行卷积的方式找出可能是棋盘格角点的点
Mat kernelA1, kernelB1, kernelC1, kernelD1;
createkernel(templateProps[i].x, templateProps[i].y, radius[i / 2], kernelA1, kernelB1, kernelC1, kernelD1);//1.1 产生四种核
std::cout << "kernelA:" << kernelA1 << endl << "kernelB:" << kernelB1 << endl
<< "kernelC:" << kernelC1 << endl << "kernelD:" << kernelD1 << endl;
Mat imgCornerA1(imageNorm.size(), CV_32F);
Mat imgCornerB1(imageNorm.size(), CV_32F);
Mat imgCornerC1(imageNorm.size(), CV_32F);
Mat imgCornerD1(imageNorm.size(), CV_32F);
filter2D(imageNorm, imgCornerA1, CV_32F, kernelA1);//1.2 用所产生的核对图像做卷积
filter2D(imageNorm, imgCornerB1, CV_32F, kernelB1);
filter2D(imageNorm, imgCornerC1, CV_32F, kernelC1);
filter2D(imageNorm, imgCornerD1, CV_32F, kernelD1);
Mat imgCornerMean(imageNorm.size(), CV_32F);
imgCornerMean = (imgCornerA1 + imgCornerB1 + imgCornerC1 + imgCornerD1) / 4;//1.3 按照公式进行计算
Mat imgCornerA(imageNorm.size(), CV_32F);
Mat imgCornerB(imageNorm.size(), CV_32F);
Mat imgCorner1(imageNorm.size(), CV_32F);
Mat imgCorner2(imageNorm.size(), CV_32F);
getMin(imgCornerA1 - imgCornerMean, imgCornerB1 - imgCornerMean, imgCornerA);
getMin(imgCornerMean - imgCornerC1, imgCornerMean - imgCornerD1, imgCornerB);
getMin(imgCornerA, imgCornerB, imgCorner1);
getMin(imgCornerMean - imgCornerA1, imgCornerMean - imgCornerB1, imgCornerA);
getMin(imgCornerC1 - imgCornerMean, imgCornerD1 - imgCornerMean, imgCornerB);
getMin(imgCornerA, imgCornerB, imgCorner2);
getMax(imgCorners, imgCorner1, imgCorners);
getMax(imgCorners, imgCorner2, imgCorners);
//getMin(imgCornerA1, imgCornerB1, imgCornerA); getMin(imgCornerC1, imgCornerD1, imgCornerB);
//getMin(imgCornerA - imgCornerMean, imgCornerMean - imgCornerB, imgCorner1);
//getMin(imgCornerMean - imgCornerA, imgCornerB - imgCornerMean, imgCorner2);
//getMax(imgCorners, imgCorner2, imgCorners);//1.4 获取每个像素点的得分
//getMax(imgCorners, imgCorner1, imgCorners);//1.4 获取每个像素点的得分
}
namedWindow("ROI");//创建窗口,显示原始图像
imshow("ROI", imgCorners); waitKey(0);
nonMaximumSuppression(imgCorners, cornerPoints, 0.01, 5, 3);//1.5 非极大值抑制算法进行过滤,获取棋盘格角点初步结果
if (cornerPoints.size()>0)
{
for (int i = 0; i < cornerPoints.size(); i++)
{
circle(Src, cornerPoints[i], 5, CV_RGB(255, 0, 0), 2);
}
}
namedWindow("src");//创建窗口,显示原始图像
imshow("src", Src); waitKey(0);
//算两个方向的梯度
Mat imageDu(gray.size(), CV_32F);
Mat imageDv(gray.size(), CV_32F);
Mat img_angle(gray.size(), CV_32F);
Mat img_weight(gray.size(), CV_32F);
//获取梯度角度和权重
getImageAngleAndWeight(gray, imageDu, imageDv, img_angle, img_weight);
//subpixel refinement
refineCorners(cornerPoints, imageDu, imageDv, img_angle, img_weight, 10);
if (cornerPoints.size()>0)
{
for (int i = 0; i < cornerPoints.size(); i++)
{
if (cornersEdge1[i][0] == 0 && cornersEdge1[i][0] == 0)
{
cornerPoints[i].x = 0; cornerPoints[i].y = 0;
}
}
}
//remove corners without edges
//score corners
vector<float> score;
scoreCorners(imageNorm, img_angle, img_weight, cornerPoints, radius, score);
if (cornerPoints.size()>0)
{
for (int i = 0; i < cornerPoints.size(); i++)
{
if (score[i]>scoreThreshold)
{
circle(Src, cornerPoints[i], 5, CV_RGB(255, 0, 0), 2);
}
}
}
namedWindow("src");//创建窗口,显示原始图像
imshow("src", Src); waitKey(0);
Point maxLoc;
FileStorage fs2("test.xml", FileStorage::WRITE);//写XML文件
fs2 << "img_corners_a1" << cornerPoints;
}