diff --git a/configure.ac b/configure.ac index 89e5130..2353e5e 100644 --- a/configure.ac +++ b/configure.ac @@ -2,7 +2,7 @@ # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) -AC_INIT([igor], [1.2.0], [quentin.marcou@lpt.ens.fr], [igor], [https://github.com/qmarcou/IGoR]) +AC_INIT([igor], [1.3.0], [quentin.marcou@lpt.ens.fr], [igor], [https://github.com/qmarcou/IGoR]) AM_INIT_AUTOMAKE([foreign -Wall -Werror]) diff --git a/docs/asciidoc/version.adoc b/docs/asciidoc/version.adoc index c54da5d..7fbb830 100644 --- a/docs/asciidoc/version.adoc +++ b/docs/asciidoc/version.adoc @@ -1 +1 @@ -Latest released version: 1.2.0 +Latest released version: 1.3.0 diff --git a/docs/index.html b/docs/index.html index c228863..928098a 100644 --- a/docs/index.html +++ b/docs/index.html @@ -5,7 +5,8 @@ -Quick summary + +IGoR (Inference and Generation Of Repertoires) Documentation +
-

IGoR: Inference and Generation Of Repertoires

-
-

This repository contains all sources and models useful to infer V(D)J -recombination related processes for TCR or BCR sequencing data using -IGoR

-
-
-

Quick summary

+

IGoR is a C++ software designed to infer V(D)J recombination related @@ -518,7 +586,7 @@

Quick summary

-

The following paper describes the methodology, performance tests and +

The following article describes the methodology, performance tests and some new biological results obtained with IGoR:

@@ -541,7 +609,7 @@

Quick summary

Version

-

Latest released version: 1.2.0

+

Latest released version: 1.3.0

@@ -568,7 +636,7 @@

Dependencies

bash

  • -

    autotools suite, asciidoctor, doxygen and the latex suite if building from +

    autotools suite, asciidoctor, pygments (optional), doxygen and the latex suite if building from unpackaged sources

  • @@ -620,13 +688,13 @@

    Install

    Linux

    -

    Widely tested on several Debian related distros. Install gcc/g if not +

    Widely tested on several Debian related distros. Install gcc/g++ if not already installed (note that another compiler could be used). With the -command line go to IGoR's root directory and simply type `./configure`. +command line go to IGoR’s root directory and simply type ./configure. This will make various check on your system and create makefiles compatible with your system configuration. Many options can be appended -to ./configure such as `./configure CC=gcc CXX=g` to enforce the use -of gcc as compiler. Once over, type make to compile the sources (this +to ./configure such as ./configure CC=gcc CXX=g\+\+ ` to enforce the use +of gcc as compiler. Once over, type `make to compile the sources (this will take a few minutes). IGoR’s executable will appear in the igor_src folder

    @@ -664,8 +732,8 @@

    MacOS

    -
    sudo port selfupdate #Update macports database
    -sudo port install gcc6 #install gcc version 6
    +
    sudo port selfupdate #Update macports database
    +sudo port install gcc6 #install gcc version 6
    @@ -676,8 +744,8 @@

    MacOS

    -
    port select --list gcc #Will list the versions of gcc available on your system
    -sudo port select --set gcc mp-gcc6 #set the one you wish to have as default call upon using the gcc command
    +
    port select --list gcc #Will list the versions of gcc available on your system
    +sudo port select --set gcc mp-gcc6 #set the one you wish to have as default call upon using the gcc command
    @@ -689,7 +757,7 @@

    MacOS

    -
    brew install gcc
    +
    brew install gcc
    @@ -995,7 +1063,7 @@

    General commands summary

    -set_CDR3_anchors --gene

    -

    Load a CSV file containing the indices/offset of +

    Load a semicolon separated file containing the indices/offset of the CDR3 anchors for the gene(--V or --J). The index should correspond to the first letter of the cysteine (for V) or tryptophan/phenylalanin (for J) for the nucleotide sequence of the gene. Indices are 0 based.

    @@ -1542,7 +1610,7 @@

    Outputs

    Python utility functions are provided to analyze these outputs in the -pygor.counters submodule.

    +pygor.counters submodule.

    Best scenarios

    @@ -1649,7 +1717,7 @@

    Command examples

    -
    igor -run_demo
    +
    igor -run_demo
    @@ -1659,23 +1727,23 @@

    Command examples

    -
    WDPATH=/path/to/your/working/directory #Let's define a shorthand for the working directory
    +
    WDPATH=/path/to/your/working/directory #Let's define a shorthand for the working directory
     
    -#We first read the sequences contained in a text file inside the demo folder
    -#This will create the align folder in the working directory and the mydemo_indexed_seqs.csv file.
    -igor -set_wd $WDPATH -batch foo -read_seqs ../demo/murugan_naive1_noncoding_demo_seqs.txt
    +#We first read the sequences contained in a text file inside the demo folder
    +#This will create the align folder in the working directory and the mydemo_indexed_seqs.csv file.
    +igor -set_wd $WDPATH -batch foo -read_seqs ../demo/murugan_naive1_noncoding_demo_seqs.txt
     
    -#Now let's align the sequences against the provided human beta chain genomic templates with default parameters
    -#This will create foo_V_alignments.csv, foo_D_alignments.csv and foo_J_alignments.csv files inside the align folder.
    -igor -set_wd $WDPATH -batch foo -species human -chain beta -align --all
    +#Now let's align the sequences against the provided human beta chain genomic templates with default parameters
    +#This will create foo_V_alignments.csv, foo_D_alignments.csv and foo_J_alignments.csv files inside the align folder.
    +igor -set_wd $WDPATH -batch foo -species human -chain beta -align --all
     
    -#Now use the provided beta chain model to get the 10 best scenarios per sequence
    -#This will create the foo_output and foo_evaluate and the corresponding files inside
    -igor -set_wd $WDPATH -batch foo -species human -chain beta -evaluate -output --scenarios 10
    +#Now use the provided beta chain model to get the 10 best scenarios per sequence
    +#This will create the foo_output and foo_evaluate and the corresponding files inside
    +igor -set_wd $WDPATH -batch foo -species human -chain beta -evaluate -output --scenarios 10
     
    -#Now generate 100 synthetic sequences from the provided human beta chain model
    -#This will create the directory bar_generate with the corresponding files containing the generated sequences and their realizations
    -igor -set_wd $WDPATH -batch bar -species human -chain beta -generate 100
    +#Now generate 100 synthetic sequences from the provided human beta chain model +#This will create the directory bar_generate with the corresponding files containing the generated sequences and their realizations +igor -set_wd $WDPATH -batch bar -species human -chain beta -generate 100
    @@ -1685,14 +1753,14 @@

    Command examples

    -
    WDPATH=/path/to/your/working/directory #Let's define a shorthand for the working directory
    -MYCOMMANDS=./igor -set_wd $WDPATH
    +
    WDPATH=/path/to/your/working/directory #Let's define a shorthand for the working directory
    +MYCOMMANDS=./igor -set_wd $WDPATH
     
    -$MYCOMMANDS -batch foo -read_seqs ../demo/murugan_naive1_noncoding_demo_seqs.txt #Read seqs
    -MYCOMMANDS=$MYCOMMANDS -species human -chain beta #Add chain and species commands
    -$MYCOMMANDS -batch foo -align --all #Align
    -$MYCOMMANDS -batch foo -evaluate -output --scenarios 10 #Evaluate
    -$MYCOMMANDS -batch bar -generate 100 #Generate
    +$MYCOMMANDS -batch foo -read_seqs ../demo/murugan_naive1_noncoding_demo_seqs.txt #Read seqs +MYCOMMANDS=$MYCOMMANDS -species human -chain beta #Add chain and species commands +$MYCOMMANDS -batch foo -align --all #Align +$MYCOMMANDS -batch foo -evaluate -output --scenarios 10 #Evaluate +$MYCOMMANDS -batch bar -generate 100 #Generate
    @@ -1805,7 +1873,7 @@

    Copying

    diff --git a/pygor/setup.py b/pygor/setup.py index 6972989..48341b5 100644 --- a/pygor/setup.py +++ b/pygor/setup.py @@ -28,7 +28,7 @@ requirements = [line.rstrip("\n") for line in f.readlines()] setup(name="pygor", - version="1.2.0", + version="1.3.0", description="Module for parsing IGoR output (alignments, models etc).", url="https://github.com/qmarcou/IGoR", author="Quentin Marcou",