-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn max pool.py
45 lines (37 loc) · 1.23 KB
/
nn max pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("../daTa",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)
input=torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]],dtype=torch.float32)
# 说明数据类型全为浮点数
input =torch.reshape(input,(-1,1,5,5))
# -1就是表示让计算机自己去算出来
print(input.shape)
class Qianshi(nn.Module):
def __init__(self):
super(Qianshi, self).__init__()
self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)
def forward(self,input):
output=self.maxpool1(input)
return output
# qianshi=Qianshi(input)
# output=Qianshi(input)
# print(output)
qianshi=Qianshi()
writer=SummaryWriter("../logs_maxpool")
step=0
for data in dataloader:
imgs,targets=data
writer.add_image("input",imgs,step)
output=Qianshi(imgs)
writer.add_image("ouput",output,step)
step=step+1
writer.close()