-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
92 lines (74 loc) · 2.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# 准备数据集
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Qianshi
train_data=torchvision.datasets.CIFAR10("../daTa",train=True,download=True,
transform=torchvision.transforms.ToTensor())
test_data=torchvision.datasets.CIFAR10(root="../daTa",train=False,download=True,transform=torchvision.transforms.ToTensor())
# length 长度
train_data_size=len(train_data)
test_data_size=len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
# 创建网络模型
qianshi=Qianshi()
# 损失函数
loss_fn=nn.CrossEntropyLoss()
#定义优化器
# 1e-2=1*(10)^(-2)
learning_rate=0.01
optimizer=torch.optim.SGD(qianshi.parameters(),lr=learning_rate)
#设置训练网络的一些参数
# 记录训练的次数
total_train_step=0
# 记录测试的轮数
test_train_step=0
# 训练的轮数
epoch=10
# 添加TensorFlowboard
writer=SummaryWriter("./logs_train")
for i in range(10):
print("-------第{}轮训练开始-------".format(i+1))
# 训练步骤开始
qianshi.train()
for data in train_dataloader:
imgs,targets=data
outputs=qianshi(imgs)
loss=loss_fn(outputs,targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step+=1
if total_train_step%100==0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始 测试说明无梯度的训练好的
total_test_loss=0
qianshi.eval()
# 整体正确的个数
total_accuracy=0
with torch.no_grad():
for data in test_dataloader:
imgs,targets=data
outputs=qianshi(imgs)
loss=loss_fn(outputs,targets)
total_test_loss=total_test_loss+loss.item()
accuracy=(outputs.argmax(1)==targets).sum()
total_accuracy+=accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,test_train_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_loss)
test_train_step+=1
torch.save(qianshi,"qianshi_{}.pth".format(i))
# torch.save(qianshi.state_dict(),"qianshi_{}.pth".format(i))
print("模型已保存")
writer.close()