-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathddp_model.py
455 lines (413 loc) · 21.6 KB
/
ddp_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import glob
import os
from utils import TINY_NUMBER, HUGE_NUMBER
from collections import OrderedDict
from nerf_network import Embedder, MLPNet
from sph_util import illuminate_vec, rotate_env
import logging
logger = logging.getLogger(__package__)
######################################################################################
# wrapper to simplify the use of nerfnet
######################################################################################
def depth2pts_outside(ray_o, ray_d, depth):
'''
ray_o, ray_d: [..., 3]
depth: [...]; inverse of distance to sphere origin
'''
# note: d1 becomes negative if this mid point is behind camera
d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
p_mid = ray_o + d1.unsqueeze(-1) * ray_d
p_mid_norm = torch.norm(p_mid, dim=-1)
ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
d2 = torch.sqrt(1. - p_mid_norm * p_mid_norm) * ray_d_cos
p_sphere = ray_o + (d1 + d2).unsqueeze(-1) * ray_d
rot_axis = torch.cross(ray_o, p_sphere, dim=-1)
rot_axis = rot_axis / torch.norm(rot_axis, dim=-1, keepdim=True)
phi = torch.asin(p_mid_norm)
theta = torch.asin(p_mid_norm * depth) # depth is inside [0, 1]
rot_angle = (phi - theta).unsqueeze(-1) # [..., 1]
# now rotate p_sphere
# Rodrigues formula: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
p_sphere_new = p_sphere * torch.cos(rot_angle) + \
torch.cross(rot_axis, p_sphere, dim=-1) * torch.sin(rot_angle) + \
rot_axis * torch.sum(rot_axis * p_sphere, dim=-1, keepdim=True) * (1. - torch.cos(rot_angle))
p_sphere_new = p_sphere_new / torch.norm(p_sphere_new, dim=-1, keepdim=True)
pts = torch.cat((p_sphere_new, depth.unsqueeze(-1)), dim=-1)
# now calculate conventional depth
depth_real = 1. / (depth + TINY_NUMBER) * torch.cos(theta) * ray_d_cos + d1
return pts, depth_real
class NerfNet(nn.Module):
def __init__(self, args):
super().__init__()
# foreground
self.fg_embedder_position = Embedder(input_dim=3,
max_freq_log2=args.max_freq_log2 - 1,
N_freqs=args.max_freq_log2,
N_anneal=args.N_anneal,
N_anneal_min_freq=args.N_anneal_min_freq,
use_annealing=args.use_annealing)
self.fg_embedder_viewdir = Embedder(input_dim=3,
max_freq_log2=args.max_freq_log2_viewdirs - 1,
N_freqs=args.max_freq_log2_viewdirs,
N_anneal=args.N_anneal,
N_anneal_min_freq=args.N_anneal_min_freq_viewdirs,
use_annealing=args.use_annealing)
self.fg_net = MLPNet(D=args.netdepth, W=args.netwidth,
input_ch=self.fg_embedder_position.out_dim,
input_ch_viewdirs=self.fg_embedder_viewdir.out_dim,
use_viewdirs=args.use_viewdirs,
use_shadow=True,
act=args.activation)
# background; bg_pt is (x, y, z, 1/r)
self.bg_embedder_position = Embedder(input_dim=4,
max_freq_log2=args.max_freq_log2 - 1,
N_freqs=args.max_freq_log2,
N_anneal=args.N_anneal,
N_anneal_min_freq=args.N_anneal_min_freq,
use_annealing=args.use_annealing)
self.bg_embedder_viewdir = Embedder(input_dim=3,
max_freq_log2=args.max_freq_log2_viewdirs - 1,
N_freqs=args.max_freq_log2_viewdirs,
N_anneal=args.N_anneal,
N_anneal_min_freq=args.N_anneal_min_freq_viewdirs,
use_annealing=args.use_annealing)
self.bg_net = MLPNet(D=args.netdepth, W=args.netwidth,
input_ch=self.bg_embedder_position.out_dim,
input_ch_viewdirs=self.bg_embedder_viewdir.out_dim,
use_viewdirs=args.use_viewdirs,
use_shadow=False,
act=args.activation)
self.with_bg = args.with_bg
self.use_shadow_jitter = args.use_shadow_jitter
self.use_shadows = args.use_shadows
def forward(self, ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals, env, iteration):
'''
:param ray_o, ray_d: [..., 3]
:param fg_z_max: [...,]
:param fg_z_vals, bg_z_vals: [..., N_samples]
:return
'''
# print(ray_o.shape, ray_d.shape, fg_z_max.shape, fg_z_vals.shape, bg_z_vals.shape)
ray_d_norm = torch.norm(ray_d, dim=-1, keepdim=True) # [..., 1]
viewdirs = ray_d / ray_d_norm # [..., 3]
dots_sh = list(ray_d.shape[:-1])
######### render foreground
N_samples = fg_z_vals.shape[-1]
fg_ray_o = ray_o.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
fg_ray_d = ray_d.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
fg_viewdirs = viewdirs.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
env_gray = env[..., 0]*0.2126 + env[..., 1]*0.7152 + env[..., 2]*0.0722
fg_sph = env_gray.view(9).unsqueeze(0).unsqueeze(0).expand(dots_sh + [N_samples, 9])
if self.use_shadow_jitter:
fg_sph = fg_sph + torch.randn_like(fg_sph)*0.01
# fg_viewdirs = fg_viewdirs * 0 # todo: disable viewdirs, because we need albedo
with torch.enable_grad():
fg_pts = fg_ray_o + fg_z_vals.unsqueeze(-1) * fg_ray_d
fg_pts.requires_grad_(True)
input = torch.cat((self.fg_embedder_position(fg_pts, iteration),
fg_sph,
self.fg_embedder_viewdir(fg_viewdirs, iteration)), dim=-1)
fg_raw = self.fg_net(input)
# sigmamasked = fg_raw['sigma']*(fg_raw['sigma'] < 4.0)
# fg_raw['sigma'] = fg_raw['sigma'] - sigmamasked
fg_normal_map = torch.autograd.grad(
outputs=fg_raw['sigma'],
inputs=fg_pts,
grad_outputs=torch.ones_like(fg_raw['sigma'], requires_grad=False),
retain_graph=True,
create_graph=True)[0]
# alpha blending
fg_dists = fg_z_vals[..., 1:] - fg_z_vals[..., :-1]
# account for view directions
fg_dists = ray_d_norm * torch.cat((fg_dists, fg_z_max.unsqueeze(-1) - fg_z_vals[..., -1:]),
dim=-1) # [..., N_samples]
fg_alpha = 1. - torch.exp(-fg_raw['sigma'] * fg_dists) # [..., N_samples]
T = torch.cumprod(1. - fg_alpha + TINY_NUMBER, dim=-1) # [..., N_samples]
bg_lambda = T[..., -1]
T = torch.cat((torch.ones_like(T[..., 0:1]), T[..., :-1]), dim=-1) # [..., N_samples]
fg_weights = fg_alpha * T # [..., N_samples]
fg_albedo_map = torch.sum(fg_weights.unsqueeze(-1) * fg_raw['rgb'], dim=-2) # [..., 3]
fg_shadow_map = torch.sum(fg_weights.unsqueeze(-1) * fg_raw['shadow'], dim=-2) # [..., 3]
if not self.use_shadows:
fg_shadow_map = fg_shadow_map * 0 + 1
fg_depth_map = torch.sum(fg_weights * fg_z_vals, dim=-1) # [...,]
# print(fg_pts.shape, fg_depth_map.shape, fg_raw['sigma'].shape)
fg_normal_map = (fg_normal_map * fg_weights.unsqueeze(-1)).mean(-2)
# fg_normal_map = fg_normal_map.mean(-2)
fg_normal_map = F.normalize(fg_normal_map, p=2, dim=-1)
# print(fg_normal_map.shape)
# c1 = 0.429043
# c2 = 0.511664
# c3 = 0.743125
# c4 = 0.886227
# c5 = 0.247708
# c = env.unsqueeze(1)
# n = fg_normal_map
# def rotate_xz(v, rot_angle):
# mat = v.new_zeros((3, 3))
# cos = np.cos(rot_angle)
# sin = np.sin(rot_angle)
# mat[0,0] = cos
# mat[0,2] = -sin
# mat[2,0] = sin
# mat[2,2] = cos
# return v @ mat.T
# cos = np.cos(rot_angle)
# sin = np.sin(rot_angle)
# n = rotate_xz(n, rot_angle)
# irradiance = (
# c4 * c[0] - c5 * c[6] +
# n[..., 0, None] * (2 * c2 * sin * c[2] + 2 * c2 * cos * c[3]) +
# n[..., 1, None] * (2 * c2 * c[1]) +
# n[..., 2, None] * (2 * c2 * cos * c[2] - 2 * c2 * sin * c[3]) +
# (n[..., 0, None] ** 2) * (c3*sin*sin*c[6]+2*c1*sin*cos*c[7]+c1*cos*cos*c[8]) +
# (n[..., 1, None] ** 2) * (-c1 * c[8]) +
# (n[..., 2, None] ** 2) * (c3*cos*cos*c[6]-2*c1*sin*cos*c[7]+c1*sin*sin*c[8]) +
# n[..., 0, None] * n[..., 1, None] * (2*c1*cos*c[4]+2*c1*sin*c[5]) +
# n[..., 0, None] * n[..., 2, None] * (2*c3*sin*cos*c[6]+2*c1*(cos*cos-sin*sin)*c[7]-2*c1*sin*cos*c[8]) +
# n[..., 1, None] * n[..., 2, None] * (-2*c1*sin*c[4]+2*c1*cos*c[5])
# )
# irradiance = (
# c1 * c[8] * (n[..., 0, None] ** 2 - n[..., 1, None] ** 2) +
# c3 * c[6] * (n[..., 2, None] ** 2) +
# c4 * c[0] -
# c5 * c[6] +
# 2 * c1 * c[4] * n[..., 0, None] * n[..., 1, None] +
# 2 * c1 * c[7] * n[..., 0, None] * n[..., 2, None] +
# 2 * c1 * c[5] * n[..., 1, None] * n[..., 2, None] +
# 2 * c2 * c[3] * n[..., 0, None] +
# 2 * c2 * c[1] * n[..., 1, None] +
# 2 * c2 * c[2] * n[..., 2, None]
# )
irradiance = illuminate_vec(fg_normal_map, env)
irradiance = torch.relu(irradiance) # can't be < 0
irradiance = irradiance ** (1 / 2.2) # linear to srgb
fg_pure_rgb_map = irradiance * fg_albedo_map
fg_rgb_map = fg_pure_rgb_map * fg_shadow_map
# render background
if self.with_bg:
N_samples = bg_z_vals.shape[-1]
bg_ray_o = ray_o.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
bg_ray_d = ray_d.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
bg_viewdirs = viewdirs.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
bg_pts, _ = depth2pts_outside(bg_ray_o, bg_ray_d, bg_z_vals) # [..., N_samples, 4]
input = torch.cat((self.bg_embedder_position(bg_pts, iteration),
self.bg_embedder_viewdir(bg_viewdirs, iteration)), dim=-1)
# near_depth: physical far; far_depth: physical near
input = torch.flip(input, dims=[-2, ])
bg_z_vals = torch.flip(bg_z_vals, dims=[-1, ]) # 1--->0
bg_dists = bg_z_vals[..., :-1] - bg_z_vals[..., 1:]
bg_dists = torch.cat((bg_dists, HUGE_NUMBER * torch.ones_like(bg_dists[..., 0:1])), dim=-1) # [..., N_samples]
bg_raw = self.bg_net(input)
bg_alpha = 1. - torch.exp(-bg_raw['sigma'] * bg_dists) # [..., N_samples]
# Eq. (3): T
# maths show weights, and summation of weights along a ray, are always inside [0, 1]
T = torch.cumprod(1. - bg_alpha + TINY_NUMBER, dim=-1)[..., :-1] # [..., N_samples-1]
T = torch.cat((torch.ones_like(T[..., 0:1]), T), dim=-1) # [..., N_samples]
bg_weights = bg_alpha * T # [..., N_samples]
bg_rgb_map = torch.sum(bg_weights.unsqueeze(-1) * bg_raw['rgb'], dim=-2) # [..., 3]
bg_depth_map = torch.sum(bg_weights * bg_z_vals, dim=-1) # [...,]
# composite foreground and background
bg_rgb_map = bg_lambda.unsqueeze(-1) * bg_rgb_map
bg_depth_map = bg_lambda * bg_depth_map
else:
bg_rgb_map = fg_rgb_map*0
bg_depth_map = fg_depth_map*0
bg_weights = fg_weights*0
if self.with_bg:
pure_rgb_map = fg_pure_rgb_map + bg_rgb_map
shadow_map = fg_shadow_map
rgb_map = fg_rgb_map + bg_rgb_map # todo: better compose fg
else:
pure_rgb_map = fg_pure_rgb_map + bg_rgb_map * 0
shadow_map = fg_shadow_map
rgb_map = fg_rgb_map + bg_rgb_map * 0 # todo: enable bg later
ret = OrderedDict([('rgb', rgb_map), # loss
('pure_rgb', pure_rgb_map),
('shadow', shadow_map),
('fg_weights', fg_weights), # importance sampling
('bg_weights', bg_weights), # importance sampling
('fg_rgb', fg_rgb_map), # below are for logging
('fg_albedo', fg_albedo_map.detach()),
('fg_shadow', fg_shadow_map.detach()),
('fg_depth', fg_depth_map.detach()),
('fg_normal', fg_normal_map.detach()),
('irradiance', irradiance.detach()),
('bg_rgb', bg_rgb_map.detach()),
('bg_depth', bg_depth_map.detach()),
('bg_lambda', bg_lambda.detach()),
('viewdir', viewdirs.detach())])
return ret
def remap_name(name):
name = name.replace('.', '-') # dot is not allowed by pytorch
if name[-1] == '/':
name = name[:-1]
idx = name.rfind('/')
for i in range(2):
if idx >= 0:
idx = name[:idx].rfind('/')
return name[idx + 1:]
class NerfNetWithAutoExpo(nn.Module):
def __init__(self, args, optim_autoexpo=False, img_names=None):
super().__init__()
self.nerf_net = NerfNet(args)
self.test_env = args.test_env
self.optim_autoexpo = optim_autoexpo
if self.optim_autoexpo:
assert (img_names is not None)
logger.info('Optimizing autoexposure!')
self.img_names = [remap_name(x) for x in img_names]
logger.info('\n'.join(self.img_names))
self.autoexpo_params = nn.ParameterDict(
OrderedDict([(x, nn.Parameter(torch.Tensor([0.5, 0.]))) for x in self.img_names]))
assert (img_names is not None)
logger.info('Optimizing envmap!')
self.img_names = [remap_name(x) for x in img_names]
logger.info('\n'.join(self.img_names))
self.env_params = nn.ParameterDict(OrderedDict(
[(x, nn.Parameter(torch.tensor([
[2.9861e+00, 3.4646e+00, 3.9559e+00],
[1.0013e-01, -6.7589e-02, -3.1161e-01],
[-8.2520e-01, -5.2738e-01, -9.7385e-02],
[2.2311e-03, 4.3553e-03, 4.9501e-03],
[-6.4355e-03, 9.7476e-03, -2.3863e-02],
[1.1078e-01, -6.0607e-02, -1.9541e-01],
[7.9123e-01, 7.6916e-01, 5.6288e-01],
[6.5793e-02, 4.3270e-02, -1.7002e-01],
[-7.2674e-02, 4.5177e-02, 2.2858e-01]
# [2.9861e+00, 3.4646e+00, 3.9559e+00],
# [1.0013e-01, -6.7589e-02, -3.1161e-01],
# [8.2520e-01, 5.2738e-01, 9.7385e-02],
# [-2.2311e-03, -4.3553e-03, -4.9501e-03],
# [6.4355e-03, -9.7476e-03, 2.3863e-02],
# [-1.1078e-01, 6.0607e-02, 1.9541e-01],
# [7.9123e-01, 7.6916e-01, 5.6288e-01],
# [6.5793e-02, 4.3270e-02, -1.7002e-01],
# [-7.2674e-02, 4.5177e-02, 2.2858e-01]
], dtype=torch.float32))) for x in self.img_names])) # todo: limit to max 1
self.register_buffer('defaultenv', torch.tensor([
[2.9861e+00, 3.4646e+00, 3.9559e+00],
[1.0013e-01, -6.7589e-02, -3.1161e-01],
[-8.2520e-01, -5.2738e-01, -9.7385e-02],
[2.2311e-03, 4.3553e-03, 4.9501e-03],
[-6.4355e-03, 9.7476e-03, -2.3863e-02],
[ 1.1078e-01, -6.0607e-02, -1.9541e-01],
[7.9123e-01, 7.6916e-01, 5.6288e-01],
[ 6.5793e-02, 4.3270e-02, -1.7002e-01],
[-7.2674e-02, 4.5177e-02, 2.2858e-01]
# [2.9861e+00, 3.4646e+00, 3.9559e+00],
# [1.0013e-01, -6.7589e-02, -3.1161e-01],
# [8.2520e-01, 5.2738e-01, 9.7385e-02],
# [-2.2311e-03, -4.3553e-03, -4.9501e-03],
# [6.4355e-03, -9.7476e-03, 2.3863e-02],
# [-1.1078e-01, 6.0607e-02, 1.9541e-01],
# [7.9123e-01, 7.6916e-01, 5.6288e-01],
# [6.5793e-02, 4.3270e-02, -1.7002e-01],
# [-7.2674e-02, 4.5177e-02, 2.2858e-01]
# [1.3242, 1.2883, 1.2783],
# [0.0256, 0.0296, 0.0315],
# [0.0376, 0.0362, 0.0390],
# [0.0057, 0.0016, 0.0027],
# [-0.0066, -0.0036, -0.0015],
# [-0.0329, -0.0395, -0.0416],
# [-0.0350, -0.0316, -0.0352],
# [0.0038, 0.0042, 0.0019],
# [0.0124, 0.0130, 0.0108]
# [0.7953949, 0.4405923, 0.5459412],
# [0.3981450, 0.3526911, 0.6097158],
# [-0.3424573, -0.1838151, -0.2715583],
# [-0.2944621, -0.0560606, 0.0095193],
# [-0.1123051, -0.0513088, -0.1232869],
# [-0.2645007, -0.2257996, -0.4785847],
# [-0.1569444, -0.0954703, -0.1485053],
# [0.5646247, 0.2161586, 0.1402643],
# [0.2137442, -0.0547578, -0.3061700]
], dtype=torch.float32))
def forward(self, ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals, iteration, img_name=None, rot_angle=None):
'''
:param ray_o, ray_d: [..., 3]
:param fg_z_max: [...,]
:param fg_z_vals, bg_z_vals: [..., N_samples]
:return
'''
if img_name is not None:
img_name = remap_name(img_name)
env = None
if self.test_env is not None:
if not os.path.isdir(self.test_env):
if 'test_env_val' not in dir(self):
env_data = np.loadtxt(self.test_env)
self.test_env_val = torch.tensor(env_data, dtype=torch.float32).to(ray_o.device)
env = self.test_env_val
logger.warning('using env ' + self.test_env)
else:
if 'test_env_val' not in dir(self):
self.test_env_val = dict()
for env_fn in sorted(glob.glob(os.path.join(self.test_env, '*'))):
env_data = np.loadtxt(env_fn)
env_name = os.path.splitext(os.path.basename(env_fn))[0]
self.test_env_val[env_name] = torch.tensor(env_data, dtype=torch.float32).to(ray_o.device)
env_name = img_name.split('/')[-1][:-4]
env = self.test_env_val[env_name]
logger.warning('using env ' + env_name)
elif img_name in self.env_params:
env = self.env_params[img_name]
else:
logger.warning('no envmap found for ' + str(img_name))
env = self.defaultenv
# env = torch.tensor([
# [ 0.7953949, 0.4405923, 0.5459412],
# [ 0.3981450, 0.3526911, 0.6097158],
# [-0.3424573, -0.1838151, -0.2715583],
# [-0.2944621, -0.0560606, 0.0095193],
# [-0.1123051, -0.0513088, -0.1232869],
# [-0.2645007, -0.2257996, -0.4785847],
# [-0.1569444, -0.0954703, -0.1485053],
# [ 0.5646247, 0.2161586, 0.1402643],
# [ 0.2137442, -0.0547578, -0.3061700]
#
# [1.3242, 1.2883, 1.2783],
# [0.0256, 0.0296, 0.0315],
# [0.0376, 0.0362, 0.0390],
# [0.0057, 0.0016, 0.0027],
# [-0.0066, -0.0036, -0.0015],
# [-0.0329, -0.0395, -0.0416],
# [-0.0350, -0.0316, -0.0352],
# [0.0038, 0.0042, 0.0019],
# [0.0124, 0.0130, 0.0108]
# ]).to(ray_o.device)
if rot_angle is not None:
# c1 = 0.429043
# c2 = 0.511664
# c3 = 0.743125
# c4 = 0.886227
# c5 = 0.247708
# cos = np.cos(rot_angle)
# sin = np.sin(rot_angle)
old_shape = env.shape
env = rotate_env(env, rot_angle)
# env = torch.stack([
# env[0] + env[6]*c5*cos*cos/c4 - env[6]*c5/c4 - 2*env[7]*c1*c5*sin*cos/(c3*c4) + env[8]*c1*c5*sin*sin/(c3*c4),
# env[1],
# env[2]*cos - env[3]*sin,
# env[2]*sin + env[3]*cos,
# env[4]*cos + env[5]*sin,
# -env[4]*sin + env[5]*cos,
# env[6]*cos*cos - 2*env[7]*c1*sin*cos/c3 + env[8]*c1*sin*sin/c3,
# env[6]*c3*sin*cos/c1 - env[7]*sin*sin + env[7]*cos*cos - env[8]*sin*cos,
# env[6]*c3*sin*sin/c1 + 2*env[7]*sin*cos + env[8]*cos*cos], 0)
if env.shape != old_shape:
print(env.shape, old_shape)
env = env.reshape(old_shape)
# assert(env.shape == old_shape)
ret = self.nerf_net(ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals, env, iteration)
if self.optim_autoexpo and (img_name in self.autoexpo_params):
autoexpo = self.autoexpo_params[img_name]
scale = torch.abs(autoexpo[0]) + 0.5 # make sure scale is always positive
shift = autoexpo[1]
ret['autoexpo'] = (scale, shift)
return ret