-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphoto.py
executable file
·121 lines (100 loc) · 3.9 KB
/
photo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import face_recognition
import cv2
import eel
import base64
import os
import pickle
import imutils
import datetime
from multiprocessing.pool import ThreadPool
from database import *
def recogFace(data, encoding):
return face_recognition.compare_faces(data["encodings"], encoding, tolerance=0.5)
def recogEncodings(rgb, boxes):
return face_recognition.face_encodings(rgb, boxes)
def recogLoc(rgb):
return face_recognition.face_locations(rgb, model="hog")
def recognizeFromPhoto(img, student_class):
pool1 = ThreadPool(processes=1)
pool2 = ThreadPool(processes=2)
pool3 = ThreadPool(processes=3)
pool4 = ThreadPool(processes=4)
# Load the known faces ids
conn = create_connection()
cursor = conn.cursor()
sql = "SELECT student_id FROM student_data WHERE class = ?;"
val = [student_class]
cursor.execute(sql, val)
student_data = cursor.fetchall()
encodings_file = "encodings.pickle"
data = {
"encodings": [],
"names": [],
}
# Load the known face and encodings
if os.path.getsize(encodings_file) > 0:
with open(encodings_file, "rb") as f:
data = pickle.loads(f.read(), encoding="latin1")
encodings = []
boxes = []
attendees_names = {}
frame = 0
# Convert the BGR to RGB
# a width of 750px (to speed up processing)
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
rgb = imutils.resize(img, width=750)
r = img.shape[1] / float(rgb.shape[1])
# detect boxes
if frame % 5 == 0:
boxes = pool1.apply_async(recogLoc, (rgb,)).get()
encodings = pool3.apply_async(recogEncodings, (rgb, boxes,)).get()
names = []
# loop over the facial encodings
for encoding in encodings:
matches = pool2.apply_async(recogFace, (data, encoding,)).get()
name = "Unknown"
# check to see if we have found a match
if True in matches:
# find the indexes of all matched faces then initialize a
# dicationary to count the total number of times each face matched
matchedIds = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the recognized faces
for i in matchedIds:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized faces with largest number
# of votes (note: in the event of an unlikely tie Python will select first entry in the dictionary)
name = max(counts, key=counts.get)
if name not in attendees_names:
attendees_names[name] = 1
for y in student_data:
if name in y:
now = datetime.datetime.now()
pool4.apply_async(submit_photo_attendance, (name, now,))
eel.updateAttendance(name)()
names.append(name)
# loop over recognized faces
for ((top, right, bottom, left), name) in zip(boxes, names):
top = int(top * r)
right = int(right * r)
bottom = int(bottom * r)
left = int(left * r)
# draw the predicted face name on the image
cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 5)
y = top - 15 if top - 15 > 15 else top + 15
cv2.putText(img, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 5)
retval, buffer = cv2.imencode('.jpg', img)
jpg_as_text = base64.b64encode(buffer)
photo_string = "data:image/jpeg;base64, " + jpg_as_text.decode()
eel.updatePhotoAttendance(photo_string)
def submit_photo_attendance(student_id, dtm):
conn = create_connection()
cursor = conn.cursor()
sql = "INSERT INTO attendance_data(date, time, student_id) VALUES (?, ?, ?);"
datestr = dtm.strftime("%Y-%m-%d")
timestr = dtm.strftime("%H:%M:%S")
val = (datestr, timestr, student_id,)
cursor.execute(sql, val)
conn.commit()
conn.close()