-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathqlearningAgents.py
241 lines (193 loc) · 8.61 KB
/
qlearningAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# qlearningAgents.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from game import *
from learningAgents import ReinforcementAgent
from featureExtractors import *
import random,util,math
class QLearningAgent(ReinforcementAgent):
"""
Q-Learning Agent
Functions you should fill in:
- computeValueFromQValues
- computeActionFromQValues
- getQValue
- getAction
- update
Instance variables you have access to
- self.epsilon (exploration prob)
- self.alpha (learning rate)
- self.discount (discount rate)
Functions you should use
- self.getLegalActions(state)
which returns legal actions for a state
"""
def __init__(self, **args):
"You can initialize Q-values here..."
ReinforcementAgent.__init__(self, **args)
self.qvalues = {}
def getQValue(self, state, action):
"""
Returns Q(state,action)
Should return 0.0 if we have never seen a state
or the Q node value otherwise
"""
if (state,action) in self.qvalues:
return self.qvalues[(state,action)]
else:
return 0.0
def setQValue(self, state, action, value):
self.qvalues[(state, action)] = value
def computeValueFromQValues(self, state):
"""
Returns max_action Q(state,action)
where the max is over legal actions. Note that if
there are no legal actions, which is the case at the
terminal state, you should return a value of 0.0.
"""
qvalues = [self.getQValue(state, action) for action in self.getLegalActions(state)]
if not len(qvalues): return 0.0
return max(qvalues)
def computeActionFromQValues(self, state):
"""
Compute the best action to take in a state. Note that if there
are no legal actions, which is the case at the terminal state,
you should return None.
Si multiples acciones tienen el mismo valor, devuelvo una random.
"""
best_value = self.getValue(state)
best_actions = [action for action in self.getLegalActions(state) \
if self.getQValue(state, action) == best_value]
if not len(best_actions): return None
else: return random.choice(best_actions)
def getAction(self, state):
"""
Compute the action to take in the current state. With
probability self.epsilon, we should take a random action and
take the best policy action otherwise. Note that if there are
no legal actions, which is the case at the terminal state, you
should choose None as the action.
HINT: You might want to use util.flipCoin(prob)
HINT: To pick randomly from a list, use random.choice(list)
"""
# Pick Action
legal_actions = self.getLegalActions(state)
action = None
if util.flipCoin(self.epsilon):
action = random.choice(legal_actions)
else:
action = self.getPolicy(state)
return action
def update(self, state, action, nextState, reward):
"""
The parent class calls this to observe a
state = action => nextState and reward transition.
You should do your Q-Value update here
NOTE: You should never call this function,
it will be called on your behalf
next_value = max[a'] Q(s', a')
donde s' es el siguiente estado
The update se realiza al llegar al estado s' y es realizado por la ecuacion:
- Q(s, a) = (1-alpha) * Q(s, a) + alpha * (R(s,a,s') + disc * max{a'}[Q(s',a')])
Donde:
- alpha es el coeficiente de aprendizaje. Notar que si es 1, se queda con la estrategia conocida.
- Q(s, a) nos devuelve los qvalores actuales
- R(s,a,s') es el reward del estado actual
- disc es el coeficiente de descuento por la accion futura
Notar que la ecuacion puede reescribirse de la forma:
- Q(s, a) = Q(s, a) + alpha * (R(s,a,s') + disc * max{a'}[Q(s',a')] - Q(s, a))
En donde puede interpretarse el termino al que alpha multiplica como la diferencia entre lo
ocurrido y lo que estabamos esperando, es decir el error. Luego, el valor se movera con un
coeficiente de "alpha" para el lado del error.
"""
disc = self.discount
alpha = self.alpha
qvalue = self.getQValue(state, action)
next_value = self.getValue(nextState)
#new_value = qvalue + alpha * (reward + disc * next_value - qvalue)
new_value = (1-alpha) * qvalue + alpha * (reward + disc * next_value)
self.setQValue(state, action, new_value)
def getPolicy(self, state):
return self.computeActionFromQValues(state) # Get best action from state
def getValue(self, state):
return self.computeValueFromQValues(state) # Get best q-value from state
class PacmanQAgent(QLearningAgent):
"Exactly the same as QLearningAgent, but with different default parameters"
def __init__(self, epsilon=0.05,gamma=0.7,alpha=0.1, numTraining=0, **args):
"""
These default parameters can be changed from the pacman.py command line.
For example, to change the exploration rate, try:
python pacman.py -p PacmanQLearningAgent -a epsilon=0.1
epsilon - exploration rate
gamma - discount factor
alpha - learning rate
numTraining - number of training episodes, i.e. no learning after these many episodes
"""
args['epsilon'] = epsilon
args['gamma'] = gamma
args['alpha'] = alpha
args['numTraining'] = numTraining
self.index = 0 # This is always Pacman
QLearningAgent.__init__(self, **args)
def getAction(self, state):
"""
Simply calls the getAction method of QLearningAgent and then
informs parent of action for Pacman. Do not change or remove this
method.
"""
action = QLearningAgent.getAction(self,state)
self.doAction(state,action)
return action
class ApproximateQAgent(PacmanQAgent):
"""
ApproximateQLearningAgent
You should only have to overwrite getQValue
and update. All other QLearningAgent functions
should work as is.
"""
def __init__(self, extractor='IdentityExtractor', **args):
self.featExtractor = util.lookup(extractor, globals())()
PacmanQAgent.__init__(self, **args)
self.setWeights()
def setWeights(self, weights={}):
self.weights = util.Counter(weights)
def getWeights(self):
return self.weights
def getQValue(self, state, action):
"""
Should return Q(state,action) = w * featureVector
where * is the dotProduct operator
"""
features = self.featExtractor.getFeatures(state, action)
result = 0
for feature in features:
result += self.weights[feature] * features[feature]
return result
def update(self, state, action, nextState, reward):
"""
Should update your weights based on transition
"""
features = self.featExtractor.getFeatures(state, action)
correction = reward + self.discount*self.getValue(nextState) - self.getQValue(state, action)
for feature in features:
self.weights[feature] += self.alpha * correction * features[feature]
def final(self, state):
"Called at the end of each game."
# call the super-class final method
PacmanQAgent.final(self, state)
# did we finish training?
if self.episodesSoFar == self.numTraining:
# you might want to print your weights here for debugging
"*** YOUR CODE HERE ***"
print "Final weights vector: "
print self.weights
pass