-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_realworld.py
181 lines (163 loc) · 7.66 KB
/
evaluate_realworld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from pathlib import Path
from omegaconf import DictConfig
import numpy as np
import hydra
import torch
from utils import seed_all_int, ensure_vol_shape
from utils.metric import compute_iou, chamfer_distance
from real_world.utils import get_tn_bounds
from learning.dataset import ResultDataset
from learning.vol_match_rotate import VolMatchRotate
from learning.vol_match_transport import VolMatchTransport
from baseline.transportnet import Transportnet
from icecream import ic as print_ic
import h5py
import random
def prepare_sample(sample):
p0_vol, p1_vol, p1_coords, p1_coords_user, p1_ori, concav_ori, sym = sample.values()
p0_vol_rotate_ten = torch.tensor(p0_vol).unsqueeze(dim=0)
p1_vol_ten = torch.tensor(p1_vol).unsqueeze(dim=0)
user_coords_gt_ten = torch.tensor(p1_coords).unsqueeze(dim=0)
user_coords_ten = torch.tensor(p1_coords_user).unsqueeze(dim=0)
p1_ori_gt_ten = torch.tensor(p1_ori).unsqueeze(dim=0)
batch = {
"p0_vol": p0_vol_rotate_ten,
"p1_vol": p1_vol_ten,
"p1_coords": user_coords_gt_ten,
"p1_coords_user": user_coords_ten,
"p1_ori": p1_ori_gt_ten,
"concav_ori": torch.tensor([concav_ori]),
"symmetry": torch.tensor([sym]),
}
return batch
def get_pt_from_vol(vol, n_pt = 1000):
x, y, z = np.where(vol<=0)
pts = np.array(list(zip(x,y,z)))
sampled_inds = random.sample(range(pts.shape[0]), n_pt)
sampled_pts = pts[sampled_inds, :]
return sampled_pts
def get_preds(batch, transporter, rotator):
with torch.no_grad():
_, pred_coords, _, pos_diff = transporter.run(batch, training=False, log=False, calc_loss=True)
batch['p1_coords'] = pred_coords.astype(int)
_, _, pred_ori, rot_diff = rotator.run(batch, training=False, log=False, calc_loss=True)
pred_coords = pred_coords[0]
return pred_coords, pred_ori, pos_diff, rot_diff
def get_sc_data(dataset_root, vol_shape):
data_paths = list(dataset_root.glob("**/data.hdf"))
size = len(data_paths)
print(f"Using SCDatsetRealworld from {dataset_root}, size={size}")
gt_vols, pred_vols, gt_pcs, pred_pcs = [], [], [], []
for index in range(size):
hdf_path = data_paths[index]
with h5py.File(str(hdf_path), "r") as hdf:
gt_vol = ensure_vol_shape(np.array(hdf.get("gt_vol")), vol_shape)
pred_vol = ensure_vol_shape(np.array(hdf.get("pred_vol")), vol_shape)
gt_pc = get_pt_from_vol(gt_vol, n_pt = 10000)
pred_pc = get_pt_from_vol(pred_vol, n_pt = 10000)
gt_vols.append(gt_vol)
pred_vols.append(pred_vol)
gt_pcs.append(gt_pc)
pred_pcs.append(pred_pc)
return np.array(gt_vols), np.array(pred_vols), np.array(gt_pcs), np.array(pred_pcs)
def get_seg_data(dataset_root):
data_paths = list(dataset_root.glob("**/data.hdf"))
size = len(data_paths)
print(f"Using SegDatsetRealworld from {dataset_root}, size={size}")
gt_masks, pred_masks = [], []
for index in range(size):
hdf_path = data_paths[index]
with h5py.File(str(hdf_path), "r") as hdf:
gt_mask = np.array(hdf.get("gt_mask"))
pred_mask = np.array(hdf.get("pred_mask"))
gt_masks.append(gt_mask)
pred_masks.append(pred_mask)
return np.array(gt_masks), np.array(pred_masks)
def evaluate_seg(gt_mask, pred_mask):
# mIoU, mAP
iou = compute_iou(gt_mask, pred_mask)
return iou
def evaluate_sc(gt_vols, pred_vols, gt_pcs, pred_pcs):
# mIoU, chamfer L1
iou = compute_iou(gt_vols, pred_vols)
cdist = chamfer_distance(gt_pcs, pred_pcs)
return iou, cdist
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
seed_all_int(100)
SEG = True
SC_OBJ = True
SC_KIT = True
SNAP = True
voxel_size = cfg.env.voxel_size
dataset_path = Path('dataset/eval_realworld')
# evaluate seg
if SEG:
seg_samples = get_seg_data(dataset_path / 'seg')
seg_iou = evaluate_seg(*seg_samples)
seg_miou = np.mean(seg_iou)
print_ic(seg_miou)
# import matplotlib.pyplot as plt
# output_dir = Path('test')
# output_dir.mkdir(exist_ok=True)
# for i in range(len(seg_samples[0])):
# gt_mask, pred_mask = seg_samples[0][i], seg_samples[1][i]
# plt.imshow(gt_mask)
# plt.savefig(str(output_dir / f'{i}_gt.png'))
# plt.close()
# plt.imshow(pred_mask)
# plt.savefig(str(output_dir / f'{i}_pred_{seg_iou[i]:.3f}.png'))
# plt.close()
# return
# evaluate sc obj
if SC_OBJ:
sc_obj_samples = get_sc_data(dataset_path / 'sc_obj', vol_shape=(128,128,128))
sc_obj_iou, sc_obj_cdist = evaluate_sc(*sc_obj_samples)
sc_obj_miou = np.mean(sc_obj_iou)
sc_obj_cdist_mean = np.mean(sc_obj_cdist) * voxel_size * 1000 # mm
print_ic(sc_obj_miou, sc_obj_cdist_mean)
# evaluate sc kit
if SC_KIT:
sc_kit_samples = get_sc_data(dataset_path / 'sc_kit', vol_shape=(400,400,256))
sc_kit_iou, sc_kit_cdist = evaluate_sc(*sc_kit_samples)
sc_kit_miou = np.mean(sc_kit_iou)
sc_kit_cdist_mean = np.mean(sc_kit_cdist) * voxel_size * 1000 # mm
print_ic(sc_kit_miou, sc_kit_cdist_mean)
# evaluate snapnet
def evaluate_snap(sample):
sample_sc, sample_raw, sample_tn = sample[-3:]
sample_sc_ten = prepare_sample(sample_sc)
sample_raw_ten = prepare_sample(sample_raw)
_, _, sc_pos_diff, sc_rot_diff = get_preds(sample_sc_ten, sc_transporter, sc_rotator)
_, _, raw_pos_diff, raw_rot_diff = get_preds(sample_raw_ten, raw_transporter, raw_rotator)
with torch.no_grad():
_, _, (tn_pos_diff, tn_rot_diff) = transporternet.run(sample_tn, training=False)
return sc_pos_diff, sc_rot_diff, raw_pos_diff, raw_rot_diff, tn_pos_diff, tn_rot_diff
if SNAP:
snap_dataset = ResultDataset.from_cfg(cfg, dataset_path / 'snap', realworld=True)
voxel_size = cfg.env.voxel_size
vm_cfg = cfg.vol_match_6DoF
gt_transport_path = 'checkpoints/oracle_transporter'
gt_rotate_path = 'checkpoints/oracle_rotator'
sc_transport_path = 'checkpoints/sc_transporter'
sc_rotate_path = 'checkpoints/sc_rotator'
raw_transport_path = 'checkpoints/raw_rotator'
raw_rotate_path = 'checkpoints/raw_rotator'
gt_transporter = VolMatchTransport.from_cfg(vm_cfg, voxel_size, load_model=True, log=False, model_path=gt_transport_path)
gt_rotator = VolMatchRotate.from_cfg(vm_cfg, load_model=True, log=False, model_path=sc_rotate_path)
sc_transporter = VolMatchTransport.from_cfg(vm_cfg, voxel_size, load_model=True, log=False, model_path=gt_transport_path)
sc_rotator = VolMatchRotate.from_cfg(vm_cfg, load_model=True, log=False, model_path=sc_rotate_path)
raw_transporter = VolMatchTransport.from_cfg(vm_cfg, voxel_size, load_model=True, log=False, model_path=raw_transport_path)
raw_rotator = VolMatchRotate.from_cfg(vm_cfg, load_model=True, log=False, model_path=raw_rotate_path)
transporternet = Transportnet.from_cfg(cfg.evaluate, load_model=True, view_bounds_info=get_tn_bounds())
snap_diffs = []
for snap_sample in snap_dataset:
all_sample_sc, all_sample_raw, all_sample_tn = snap_sample[-3:]
for sample in list(zip(all_sample_sc, all_sample_raw, all_sample_tn)):
snap_diffs.append(evaluate_snap(sample))
snap_diffs = np.array(snap_diffs)
snap_diffs_med = np.median(snap_diffs, axis=0)
sc_pos_med, sc_ori_med, raw_pos_med, raw_rot_med, tn_pos_med, tn_rot_med = snap_diffs_med
print_ic(sc_pos_med, sc_ori_med, raw_pos_med, raw_rot_med, tn_pos_med, tn_rot_med)
if __name__ == "__main__":
main()