-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_irp_cloth.py
70 lines (62 loc) · 1.95 KB
/
train_irp_cloth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# %%
# import
import os
import pathlib
import yaml
import hydra
from omegaconf import DictConfig, OmegaConf
import pytorch_lightning as pl
from datasets.cloth_delta_gaussian_dataset import ClothDeltaGaussianDataModule
from networks.cloth_delta_deeplab import ClothDeltaDeeplab
from pl_vis.image_grid_callback import ImageGridCallback
# %%
# main script
@hydra.main(config_path="config", config_name=pathlib.Path(__file__).stem)
def main(cfg: DictConfig) -> None:
# hydra creates working directory automatically
print(os.getcwd())
os.mkdir("checkpoints")
datamodule = ClothDeltaGaussianDataModule(**cfg.datamodule)
cfg.model.action_sigma = cfg.datamodule.action_sigma
model = ClothDeltaDeeplab(**cfg.model)
logger = pl.loggers.WandbLogger(
project=os.path.basename(__file__),
**cfg.logger)
wandb_run = logger.experiment
wandb_meta = {
'run_name': wandb_run.name,
'run_id': wandb_run.id
}
all_config = {
'config': OmegaConf.to_container(cfg, resolve=True),
'output_dir': os.getcwd(),
'wandb': wandb_meta
}
yaml.dump(all_config, open('config.yaml', 'w'), default_flow_style=False)
logger.log_hyperparams(all_config)
datamodule.prepare_data()
val_dataset = datamodule.get_dataset('val')
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath="checkpoints",
filename="{epoch}-{val_loss:.4f}",
monitor='val_loss',
save_last=True,
save_top_k=5,
mode='min',
save_weights_only=False,
every_n_epochs=1,
save_on_train_epoch_end=True)
vis_callback = ImageGridCallback(
val_dataset,
**cfg.vis_callback
)
trainer = pl.Trainer(
callbacks=[checkpoint_callback, vis_callback],
checkpoint_callback=True,
logger=logger,
**cfg.trainer)
trainer.fit(model=model, datamodule=datamodule)
# %%
# driver
if __name__ == "__main__":
main()