-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate_relevancy.py
455 lines (432 loc) · 18.2 KB
/
generate_relevancy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from typing import List
from pathlib import Path
import h5py
import torch
from tqdm import tqdm
import ray
from utils import write_to_hdf5
from filelock import FileLock
import numpy as np
from CLIP.clip import ClipWrapper, saliency_configs, imagenet_templates
from dataset import synonyms, deref_h5py
import typer
import imageio
from matplotlib import pyplot as plt
import cv2
from time import time
app = typer.Typer()
def resize_and_add_data(dataset, data):
data_shape = np.array(data.shape)
dataset_shape = np.array(dataset.shape)
assert (dataset_shape[1:] == data_shape[1:]).all()
dataset.resize(dataset_shape[0] + data_shape[0], axis=0)
dataset[-data_shape[0] :, ...] = data
return [
dataset.regionref[dataset_shape[0] + i, ...]
for i in np.arange(0, data_shape[0])
]
def get_datastructure(image_shape, relevancy_shape, tsdf_dim, num_output_pts, **kwargs):
image_shape = list(image_shape)
relevancy_shape = list(relevancy_shape)
return {
"rgb": {"dtype": "uint8", "item_shape": image_shape + [3]},
"depth": {"dtype": "f", "item_shape": image_shape},
"seg": {"dtype": "i", "item_shape": image_shape},
"saliencies": {"dtype": "f", "item_shape": relevancy_shape},
"tsdf_value_pts": {"dtype": "f", "item_shape": [np.prod(tsdf_dim)]},
"tsdf_xyz_pts": {"dtype": "f", "item_shape": [np.prod(tsdf_dim), 3]},
"full_xyz_pts": {"dtype": "f", "item_shape": [num_output_pts, 3]},
"full_objid_pts": {"dtype": "i", "item_shape": [num_output_pts]},
}
def init_dataset(file_path, data_structure):
with h5py.File(file_path, mode="w") as file:
# setup
for key, data_info in data_structure.items():
file.create_dataset(
name=key,
shape=tuple([0] + data_info["item_shape"]),
dtype=data_info["dtype"],
chunks=tuple([1] + data_info["item_shape"]),
compression="gzip",
compression_opts=9,
maxshape=tuple([None] + data_info["item_shape"]),
)
@ray.remote
def generate_saliency_helper(
clip_wrapper, rgb_inputs, prompts, text_labels, scene_path, replace
):
saliencies = {
rgb_name: {
saliency_config_name: ray.get(
clip_wrapper.get_clip_saliency.remote(
img=rgb,
text_labels=text_labels,
prompts=prompts
if "imagenet_prompt_ensemble"
not in saliency_config(img_dim=min(rgb.shape[:2]))
or not saliency_config(img_dim=min(rgb.shape[:2]))[
"imagenet_prompt_ensemble"
]
else imagenet_templates,
**saliency_config(img_dim=min(rgb.shape[:2])),
)
)
for saliency_config_name, saliency_config in saliency_configs.items()
}
for rgb_name, rgb in rgb_inputs.items()
}
with FileLock(scene_path + ".lock"):
with h5py.File(scene_path, mode="a") as f:
saliency_group = f["data"].create_group("saliencies")
for rgb_name, rgb_saliencies in saliencies.items():
for (
saliency_config_name,
(config_saliency, text_label_features),
) in rgb_saliencies.items():
storage_dims = np.array(f["saliencies"].shape)[1:]
config_saliency = torch.nn.functional.interpolate(
config_saliency[:, None, :, :],
size=tuple(storage_dims),
mode="nearest-exact"
# mode='bilinear',
# align_corners=False
)[:, 0]
config_saliency = torch.cat(
[config_saliency, config_saliency.mean(dim=0, keepdim=True)],
dim=0,
)
text_label_features = torch.cat(
[
text_label_features,
text_label_features.mean(dim=0, keepdim=True),
],
dim=0,
)
text_label_features /= text_label_features.norm(
dim=-1, keepdim=True
)
write_to_hdf5(
saliency_group,
key=rgb_name
+ "|"
+ saliency_config_name
+ "|saliency_text_labels",
value=np.array(text_labels + ["mean"]).astype("S"),
replace=replace,
)
write_to_hdf5(
saliency_group,
key=rgb_name
+ "|"
+ saliency_config_name
+ "|saliency_text_label_features",
value=text_label_features,
replace=replace,
)
region_references = resize_and_add_data(
dataset=f["saliencies"], data=config_saliency
)
write_to_hdf5(
saliency_group,
key=rgb_name + "|" + saliency_config_name,
dtype=h5py.regionref_dtype,
value=region_references,
replace=replace,
)
return clip_wrapper
@app.command()
def dataset(
file_path: str,
num_processes: int,
local: bool,
prompts: List[str] = ["a render of a {} in a game engine."],
replace=False,
):
if "matterport" in file_path or "nyu" in file_path:
prompts = ["a photograph of a {} in a home."]
print(prompts)
tasks = []
ray.init(log_to_driver=True, local_mode=local)
num_cuda_devices = torch.cuda.device_count()
assert num_cuda_devices > 0
print(f"[INFO] FOUND {num_cuda_devices} CUDA DEVICE")
wrapper_actor_cls = ray.remote(ClipWrapper)
available_clip_wrappers = [
wrapper_actor_cls.options(num_gpus=num_cuda_devices / num_processes).remote(
clip_model_type="ViT-B/32", device="cuda"
)
for _ in range(num_processes)
]
scene_paths = list(reversed(sorted(map(str, Path(file_path).rglob("*.hdf5")))))
if replace:
if input("Replace = True. Delete existing relevancies? [y/n]") != "y":
exit()
for scene_path in tqdm(
scene_paths, dynamic_ncols=True, desc="deleting existing relevancies"
):
try:
with h5py.File(scene_path, mode="a") as f:
for k in f["data"]:
if "salienc" in k:
del f[f"data/{k}"]
if "saliencies" in f:
data_shape = list(f["saliencies"].shape[1:])
del f["saliencies"]
f.create_dataset(
name="saliencies",
shape=tuple([0] + data_shape),
dtype="f",
chunks=tuple([1] + data_shape),
compression="gzip",
compression_opts=9,
maxshape=tuple([None] + data_shape),
)
except Exception as e:
print(e, scene_path)
exit()
for scene_path in tqdm(
scene_paths, dynamic_ncols=True, desc="generating relevancies", smoothing=0.001
):
assert len(available_clip_wrappers) > 0
try:
with h5py.File(scene_path, mode="a") as f:
scene_already_done = "saliencies" in f["data"]
if not scene_already_done or replace:
if scene_already_done:
for k in f["data"]:
if "salienc" in k:
del f[f"data/{k}"]
data_shape = f["saliencies"].shape[1:]
if "saliencies" in f:
del f["saliencies"]
f.create_dataset(
name="saliencies",
shape=tuple([0] + data_shape),
dtype="f",
chunks=tuple([1] + data_shape),
compression="gzip",
compression_opts=9,
maxshape=tuple([None] + data_shape),
)
if "data/visible_scene_obj_labels" in f:
del f["data/visible_scene_obj_labels"]
objid_to_class = np.array(f[f"data/objid_to_class"]).astype(str)
text_labels = objid_to_class.copy()
scene_has_groundtruth = (
"seg" in f["data"] and "full_objid_pts" in f["data"]
)
visible_scene_obj_labels = text_labels.copy()
if scene_has_groundtruth:
objids_in_scene = list(
set(
deref_h5py(
dataset=f["full_objid_pts"],
refs=f["data/full_objid_pts"],
)
.astype(int)
.reshape(-1)
)
- {-1}
) # remove empty
scene_object_labels = text_labels.copy()[objids_in_scene]
# remove objects which are not in view
gt_seg = deref_h5py(dataset=f["seg"], refs=f["data"]["seg"])[0]
visible_obj_ids = list(map(int, set(np.unique(gt_seg)) - {-1}))
visible_obj_labels = text_labels[visible_obj_ids]
visible_scene_obj_labels = list(
set(visible_obj_labels).intersection(
set(scene_object_labels)
)
)
visible_scene_obj_labels = list(
sorted(
set(
map(
lambda c: c.split("[")[0].lstrip().rstrip(),
visible_scene_obj_labels,
)
)
)
)
# visible_scene_obj_labels used to filter
# objects both visible and in scene
text_labels = visible_obj_labels.copy()
text_labels = set(text_labels)
# create saliency maps necessary for descriptions
if (
"descriptions" in f["data"]
and len(np.array(f["data/descriptions/spatial_relation_name"]))
> 0
):
target_obj_names = np.array(
f["data/descriptions/target_obj_name"]
).astype(str)
reference_obj_names = np.array(
f["data/descriptions/reference_obj_name"]
).astype(str)
spatial_relation_names = np.array(
f["data/descriptions/spatial_relation_name"]
).astype(str)
text_labels = text_labels.union(
target_obj_names.tolist() + reference_obj_names.tolist()
)
# gradcam for clip spatial
descriptions = ""
for desc_part in [
target_obj_names,
" ",
spatial_relation_names,
" a ",
reference_obj_names,
]:
descriptions = np.char.add(descriptions, desc_part)
text_labels = text_labels.union(descriptions)
# descriptions with synonyms
descriptions = ""
for desc_part in [
np.array(
list(
map(
lambda x: x
if x not in synonyms.keys()
else synonyms[x],
target_obj_names,
)
)
),
" ",
spatial_relation_names,
" a ",
np.array(
list(
map(
lambda x: x
if x not in synonyms.keys()
else synonyms[x],
reference_obj_names,
)
)
),
]:
descriptions = np.char.add(descriptions, desc_part)
text_labels = text_labels.union(descriptions)
text_labels = set(
map(lambda c: c.split("[")[0].lstrip().rstrip(), text_labels)
)
# do synonyms
text_labels = text_labels.union(
map(
lambda text_label: synonyms[text_label],
filter(
lambda text_label: text_label in synonyms, text_labels
),
)
)
for remove_label in {"unlabelled", "empty", "out of bounds"}:
if remove_label in text_labels:
text_labels.remove(remove_label)
text_labels = list(sorted(text_labels))
rgb_inputs = {"rgb": np.array(f["rgb"][f["data"]["rgb"][0]][0])}
if (
"domain_randomized_rgb" in f["data"]
and len(np.array(f["data/domain_randomized_rgb"])[0].shape) > 1
):
rgb_inputs["domain_randomized_rgb"] = np.array(
f["data/domain_randomized_rgb"]
)[0]
write_to_hdf5(
f["data"],
key="visible_scene_obj_labels",
value=np.array(visible_scene_obj_labels).astype("S"),
replace=replace,
)
clip_wrapper = available_clip_wrappers.pop()
tasks.append(
generate_saliency_helper.remote(
clip_wrapper=clip_wrapper,
scene_path=scene_path,
rgb_inputs=rgb_inputs,
text_labels=text_labels,
prompts=prompts,
replace=replace,
)
)
except Exception as e:
print(e)
print(scene_path, "invalid hdf5 file")
if len(available_clip_wrappers) == 0:
readies, tasks = ray.wait(tasks, num_returns=1)
num_readies = len(readies)
try:
available_clip_wrappers.extend(ray.get(readies))
except Exception as e:
print(e)
available_clip_wrappers.extend(
[
wrapper_actor_cls.options(
num_gpus=num_cuda_devices / num_processes
).remote(clip_model_type="ViT-B/32", device="cuda")
for _ in range(num_readies)
]
)
ray.get(tasks)
@app.command()
def image(
file_path: str = typer.Argument(
default="matterport.png", help="path of image file"
),
labels: List[str] = typer.Option(
default=[
"basketball jersey",
"nintendo switch",
"television",
"ping pong table",
"vase",
"fireplace",
"abstract painting of a vespa",
"carpet",
"wall",
],
help='list of object categories (e.g.: "nintendo switch")',
),
prompts: List[str] = typer.Option(
default=["a photograph of a {} in a home."],
help="prompt template to use with CLIP.",
),
):
"""
Generates a multi-scale relevancy for image at `file_path`.
"""
img = np.array(imageio.imread(file_path))
assert img.dtype == np.uint8
h, w, c = img.shape
start = time()
grads = ClipWrapper.get_clip_saliency(
img=img,
text_labels=np.array(labels),
prompts=prompts,
**saliency_configs["ours"](h),
)[0]
print(f"get gradcam took {float(time() - start)} seconds", grads.shape)
grads -= grads.mean(axis=0)
grads = grads.cpu().numpy()
fig, axes = plt.subplots(3, 3)
axes = axes.flatten()
vmin = 0.002
cmap = plt.get_cmap("jet")
vmax = 0.008
for ax, label_grad, label in zip(axes, grads, labels):
ax.axis("off")
ax.imshow(img)
ax.set_title(label, fontsize=12)
grad = np.clip((label_grad - vmin) / (vmax - vmin), a_min=0.0, a_max=1.0)
colored_grad = cmap(grad)
grad = 1 - grad
colored_grad[..., -1] = grad * 0.7
ax.imshow(colored_grad)
plt.tight_layout(pad=0)
plt.savefig("grads.png")
print("dumped relevancy to grads.png")
plt.show()
if __name__ == "__main__":
app()