Skip to content

Latest commit

 

History

History
291 lines (210 loc) · 7.82 KB

README.md

File metadata and controls

291 lines (210 loc) · 7.82 KB

CRAN_Status_Badge

Welcome to the simulacr package!

This package is under development. Do not use it without contacting the authors first.

Installing the package

To install the current stable, CRAN version of the package, type:

install.packages("simulacr")

To benefit from the latest features and bug fixes, install the development, github version of the package using:

devtools::install_github("reconhub/simulacr")

Note that this requires the package devtools installed.

What does it do?

simulacr implements outbreak simulation using branching processes. The main features of the package include:

  • simulate_outbreak: the main function, allowing to simulate outbreaks for specified values of reproduction number, incubation period, duration of infectiousness, and optionally reporting delays; it outputs a linelist stored as a data.frame with the class outbreak, including information on transmission chains; the output can be converted to epicontacts objects for visualisation, and plotted using plot(...)

  • as_epicontacts: a function to convert outbreak object to epicontact; called implicitely when plotting outbreak objects

  • make_disc_gamma: wrapper function to build discretised Gamma distributions easily

  • draw_labels: wrapper function to generate random alphanumeric labels


Worked example

This brief example illustrates how we can simulate an outbreak, with different ways of specifying input distributions.

Specifying delay distributions

Distributions can be specified in different ways:

  • as a discretised distribution stored as distcrete object, e.g. generated via make_disc_gamma
  • as a function with a single argument (the delay) computing probability mass function (pmf) of different delays
  • as a vector of $n$ positive numbers, taken to be the pmf of delays of 0:($n$-1)

We illustrate these different options below, with:

  • a flat distribution of the incubation time 1-4 days (all other values have a null probability)
  • an infectious period defined as a discretised Gamma distribution stored as a distcrete object
  • a reporting delay following a Poisson distribution, specified as a function
library("simulacr")

incubation <- c(0, 1, 1, 1, 1) # numbers = unscaled PMF
infectious_period <- make_disc_gamma(10, 7) # distcrete object
reporting <- function(x) dpois(x, 5) # PMF function

Simulating an outbreak

set.seed(1)
x <- simulate_outbreak(R = runif(100, 1, 3), # random values on [1;3]
                       dist_incubation= incubation,
                       dist_infectious_period = infectious_period,
                       dist_reporting = reporting)

The output is a data.frame with the class outbreak, which contains a linelist of cases:

class(x)
## [1] "outbreak"   "data.frame"
dim(x)
## [1] 77  6
head(x)
##       id source date_infection date_onset date_report        R
## 1 eLGzdD   <NA>              0          3          12 1.954460
## 2 MQ90i6 eLGzdD              4          5          12 2.209867
## 3 VCEaZ4 MQ90i6              8         11          18 2.284577
## 4 bEGjSA eLGzdD             12         13          17 2.321596
## 5 k6rcYK eLGzdD             12         16          19 1.764776
## 6 msP3Ki bEGjSA             15         16          19 2.514174
tail(x)
##        id source date_infection date_onset date_report        R
## 72 K0450K S0jiBe             83         84          89 2.321596
## 73 7a20Ap xeKC7z             83         86          91 1.403364
## 74 41R9ih uijTrA             85         87          91 1.820168
## 75 oiHVQb Q2diLw             86         87          91 2.284577
## 76 vEGjkv 7a20Ap             86         88          92 2.796779
## 77 uo5Bds shTo1z             90         94          98 1.490977

This object can be plotted using (this will open an interactive graph:

plot(x)

plot of chunk plot_x

For any work relying on transmission trees, it may be easiest to convert the outbreak object to an epicontacts:

net <- as_epicontacts(x)
net
## 
## /// Epidemiological Contacts //
## 
##   // class: epicontacts
##   // 77 cases in linelist; 77 contacts;  directed 
## 
##   // linelist
## 
## # A tibble: 77 x 4
##    id     date_infection date_onset date_report
##    <chr>           <dbl>      <int>       <int>
##  1 eLGzdD              0          3          12
##  2 MQ90i6              4          5          12
##  3 VCEaZ4              8         11          18
##  4 bEGjSA             12         13          17
##  5 k6rcYK             12         16          19
##  6 msP3Ki             15         16          19
##  7 Ntdjbt             16         17          21
##  8 iwXiO6             18         20          24
##  9 vHa6qJ             18         19          22
## 10 8Fix6l             19         21          23
## # … with 67 more rows
## 
##   // contacts
## 
## # A tibble: 77 x 2
##    from   to    
##    <chr>  <chr> 
##  1 <NA>   eLGzdD
##  2 eLGzdD MQ90i6
##  3 MQ90i6 VCEaZ4
##  4 eLGzdD bEGjSA
##  5 eLGzdD k6rcYK
##  6 bEGjSA msP3Ki
##  7 bEGjSA Ntdjbt
##  8 bEGjSA iwXiO6
##  9 MQ90i6 vHa6qJ
## 10 VCEaZ4 8Fix6l
## # … with 67 more rows

Simulating contacts

Contacts can be simulated and added to a simulated outbreak, using similar procedures to the one used in simulate_outbreak, with a few differences:

  • n_contacts: the numbers of contacts per index case is specified in the same way as the reproduction number R in simulate_outbreaks

  • the two distributions relate to the time between onset of the index case and the beginning of secondar exposures (dist_time_to_contact) and the duration of the exposure window (duration) after the first day of contact

## exposure starts 0-2 days post onset
time_to_contact = c(1, 1, 1)

## geom dist for duration of exposure
duration <- function(x) dgeom(x, prob = .9)

x_with_contacts <- simulate_contacts(
    x[1:10, ],
    n_contacts = 1:10, # 1 to 10 contacts
    dist_time_to_contact = time_to_contact,
    dist_duration = duration)

## check output
class(x_with_contacts)
## [1] "outbreak"   "data.frame"
dim(x_with_contacts)
## [1] 64  9
head(x_with_contacts)
##        id source date_infection date_onset date_report        R     type
## 1  eLGzdD   <NA>              0          3          12 1.954460     case
## 2  MQ90i6 eLGzdD              4          5          12 2.209867     case
## 12 x72VZq eLGzdD             NA         NA          NA       NA non_case
## 14 tsI8G0 eLGzdD             NA         NA          NA       NA non_case
## 11 HBGWgN eLGzdD             NA         NA          NA       NA non_case
## 13 ewV5zO eLGzdD             NA         NA          NA       NA non_case
##    date_exposure_start date_exposure_end
## 1                    0                 0
## 2                    4                 4
## 12                   4                 4
## 14                   4                 4
## 11                   5                 5
## 13                   5                 5
plot(x_with_contacts)

plot of chunk sim_contacts

Resources

Vignettes

No vignette currently available.

Getting help online

Bug reports and feature requests should be posted on github using the issue system. All other questions should be posted on the RECON forum:
http://www.repidemicsconsortium.org/forum/

Contributions are welcome via pull requests.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.