-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTwitterSentimentNew.py
241 lines (205 loc) · 9.61 KB
/
TwitterSentimentNew.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torchtext
import re
from torchtext import data
from torchtext import vocab
import torch
import torch.nn as nn
import torch.functional as F
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.autograd import Variable
import pandas as pd
import numpy as np
import torch.optim as optim
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from sklearn.model_selection import StratifiedShuffleSplit, train_test_split
from sklearn.metrics import accuracy_score
from tqdm import tqdm, tqdm_notebook, tnrange
import tweepy
import csv
import re
import math
import os
from datetime import datetime, timedelta
tqdm.pandas(desc='Progress')
from getTweets import getTweets
class BatchGenerator:
def __init__(self, dl, x_field, y_field):
self.dl, self.x_field, self.y_field = dl, x_field, y_field
def __len__(self):
return len(self.dl)
def __iter__(self):
for batch in self.dl:
X = getattr(batch, self.x_field)
y = getattr(batch, self.y_field)
yield (X,y)
def tokenizer(s):
return [w.lower() for w in tweet_clean(s)]
def tweet_clean(text):
text = re.sub(r'[^A-Za-z0-9]+', ' ', text) # remove non alphanumeric character
text = re.sub('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+','',text)
text = text.replace(',',';')
return text.strip()
def CreateTrainDS(valid):
result = pd.DataFrame()
fields = ['Tweet','Label']
file_dict = {'Altcoin':'TwitterAltcoin25Apr.tsv','Bitcoin':'TwitterBitcoinFrom7AprTrainTry1.tsv','Ethereum':'TwitterEthereum25Apr.tsv','Litecoin':'TwitterLitecoinTill7Apr.tsv'}
valid_file = "/home/nithin/Git/Cryptic/SentimentAnalysis/Twitter/"+valid+"TwitterValid.tsv"
train_file = "/home/nithin/Git/Cryptic/SentimentAnalysis/Twitter/TwitterTrain.tsv"
return train_file, valid_file
txt_field = data.Field(sequential=True,
# tokenize=tokenizer,
include_lengths=True,
use_vocab=True)
label_field = data.Field(sequential=False,
use_vocab=False,
pad_token=None,
unk_token=None)
def DefTrainValid(train_file, valid_file):
train_val_fields = [
('Tweet', txt_field), # process it as text
('Label', label_field) # process it as label
]
trainds, valds = data.TabularDataset.splits(path='/home/nithin/Git/Cryptic/SentimentAnalysis/Twitter',
format='tsv',
train=train_file,
validation=valid_file,
fields=train_val_fields,
skip_header=True)
return trainds, valds
def TwitterSentimentAnalysis(currency):
valid = currency
consumer_key = 'xe0AylJIY70ajsgiqaH9nhiN8'
consumer_secret = 'ppSTBFemSNYFcd12AeWZ8qs7B3EcQVlBiZSBLsjzC3fVUctY1p'
access_token = '1102516793275494400-fsRMutAx1xLtSiMAuhQCbtNYByp6Hz'
access_token_secret = 'eJ2dD5GcCU5Fy4HTBwvNQJFyFOBKly3szvUrIEtkSRgNQ'
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth,wait_on_rate_limit=True)
getTweets(currency)
train_file, valid_file = CreateTrainDS(valid)
trainds, valds = DefTrainValid(train_file, valid_file)
vec = vocab.Vectors('glove.twitter.27B.100d.txt', '/home/nithin/Git/Cryptic/GloVe-1.2')
txt_field.build_vocab(trainds, valds, max_size=200000, vectors=vec)
label_field.build_vocab(trainds)
traindl, valdl = data.BucketIterator.splits(datasets=(trainds, valds),
batch_sizes=(512,1024),
sort_key=lambda x: len(x.Tweet),
sort_within_batch=True,
repeat=False)
train_batch_it = BatchGenerator(traindl, 'Tweet', 'Label') # use the wrapper to convert Batch to data
val_batch_it = BatchGenerator(valdl, 'Tweet', 'Label')
vocab_size = len(txt_field.vocab)
embedding_dim = 100
n_hidden = 64
n_out = 3
model = ConcatPoolingGRUAdaptive(vocab_size, embedding_dim, n_hidden, n_out, trainds.fields['Tweet'].vocab.vectors)
opt = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), 1e-3)
return fit(model, train_dl=train_batch_it, val_dl=val_batch_it, loss_fn=F.nll_loss, opt=opt, epochs=15)
class SimpleGRU(nn.Module):
def __init__(self, vocab_size, embedding_dim, n_hidden, n_out, pretrained_vec, bidirectional=True):
super().__init__()
self.vocab_size,self.embedding_dim,self.n_hidden,self.n_out,self.bidirectional = vocab_size, embedding_dim, n_hidden, n_out, bidirectional
self.emb = nn.Embedding(self.vocab_size, self.embedding_dim)
self.emb.weight.data.copy_(pretrained_vec)
self.emb.weight.requires_grad = False
self.gru = nn.GRU(self.embedding_dim, self.n_hidden, bidirectional=bidirectional)
self.out = nn.Linear(self.n_hidden, self.n_out)
def forward(self, seq, lengths):
bs = seq.size(1) # batch size
seq = seq.transpose(0,1)
self.h = self.init_hidden(bs) # initialize hidden state of GRU
embs = self.emb(seq)
embs = embs.transpose(0,1)
embs = pack_padded_sequence(embs, lengths) # unpad
gru_out, self.h = self.gru(embs, self.h) # gru returns hidden state of all timesteps as well as hidden state at last timestep
gru_out, lengths = pad_packed_sequence(gru_out) # pad the sequence to the max length in the batch
# since it is as classification problem, we will grab the last hidden state
outp = self.out(self.h[-1]) # self.h[-1] contains hidden state of last timestep
# return F.log_softmax(outp, dim=-1)
return F.log_softmax(outp)
def init_hidden(self, batch_size):
if self.bidirectional:
return torch.zeros((2,batch_size,self.n_hidden))
else:
return torch.zeros((1,batch_size,self.n_hidden))
class ConcatPoolingGRUAdaptive(nn.Module):
def __init__(self, vocab_size, embedding_dim, n_hidden, n_out, pretrained_vec, bidirectional=True):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.n_hidden = n_hidden
self.n_out = n_out
self.bidirectional = bidirectional
self.emb = nn.Embedding(self.vocab_size, self.embedding_dim)
self.emb.weight.data.copy_(pretrained_vec) # load pretrained vectors
self.emb.weight.requires_grad = False # make embedding non trainable
self.gru = nn.GRU(self.embedding_dim, self.n_hidden, bidirectional=bidirectional)
if bidirectional:
self.out = nn.Linear(self.n_hidden*2*2, self.n_out)
else:
self.out = nn.Linear(self.n_hidden*2, self.n_out)
def forward(self, seq, lengths):
bs = seq.size(1)
self.h = self.init_hidden(bs)
seq = seq.transpose(0,1)
embs = self.emb(seq)
embs = embs.transpose(0,1)
embs = pack_padded_sequence(embs, lengths)
gru_out, self.h = self.gru(embs, self.h)
gru_out, lengths = pad_packed_sequence(gru_out)
avg_pool = F.adaptive_avg_pool1d(gru_out.permute(1,2,0),1).view(bs,-1)
max_pool = F.adaptive_max_pool1d(gru_out.permute(1,2,0),1).view(bs,-1)
outp = self.out(torch.cat([avg_pool,max_pool],dim=1))
return F.log_softmax(outp, dim=-1)
def init_hidden(self, batch_size):
if self.bidirectional:
return torch.zeros((2,batch_size,self.n_hidden))
else:
return torch.zeros((1,batch_size,self.n_hidden))
def fit(model, train_dl, val_dl, loss_fn, opt, epochs=3):
num_batch = len(train_dl)
senti_dict = {}
for epoch in range(epochs):
y_true_train = list()
y_pred_train = list()
total_loss_train = 0
# t = tqdm_notebook(iter(train_dl), leave=False, total=num_batch)
t = iter(train_dl)
for (X,lengths),y in t:
# t.set_description("Epoch {0}".format(epoch))
lengths = lengths.cpu().numpy()
opt.zero_grad()
pred = model(X, lengths)
loss = loss_fn(pred, y)
loss.backward()
opt.step()
# t.set_postfix(loss=loss.item())
pred_idx = torch.max(pred, dim=1)[1]
y_true_train += list(y.cpu().data.numpy())
y_pred_train += list(pred_idx.cpu().data.numpy())
total_loss_train += loss.item()
train_acc = accuracy_score(y_true_train, y_pred_train)
train_loss = total_loss_train/len(train_dl)
y_true_val = list()
y_pred_val = list()
total_loss_val = 0
for (X,lengths),y in val_dl:
# tqdm_notebook(val_dl, leave=False):
pred = model(X, lengths.cpu().numpy())
loss = loss_fn(pred, y)
pred_idx = torch.max(pred, 1)[1]
y_true_val += list(y.cpu().data.numpy())
y_pred_val += list(pred_idx.cpu().data.numpy())
total_loss_val += loss.item()
valacc = accuracy_score(y_true_val, y_pred_val)
valloss = total_loss_val/len(val_dl)
y4senti = [i for i in y_pred_val if i!=1]
avg_senti = np.mean(y4senti)
if(avg_senti<1.0):
final_senti = 0 + ((avg_senti)/2)*100
elif(avg_senti==1.0):
final_senti = 50
else:
final_senti = 50 + ((avg_senti-1)/2)*100
return final_senti