-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathdemo_single.py
45 lines (37 loc) · 1.35 KB
/
demo_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from TextClassification import load_data
from sklearn.model_selection import train_test_split
import tensorflow as tf
import pickle
import numpy as np
sess = tf.InteractiveSession()
# 导入数据
data_type = 'single'
data = load_data(data_type)
x = data['evaluation']
y = [[i] for i in data['label']]
# 拆分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=1)
##### 以下是训练过程 #####
from TextClassification import TextClassification
clf = TextClassification()
texts_seq, texts_labels = clf.get_preprocess(x_train, y_train,
word_len=1,
num_words=2000,
sentence_len=50)
clf.fit(texts_seq=texts_seq,
texts_labels=texts_labels,
output_type=data_type,
epochs=10,
batch_size=64,
model=None)
# 保存整个模块,包括预处理和神经网络
with open('./%s.pkl' % data_type, 'wb') as f:
pickle.dump(clf, f)
##### 以下是预测过程 #####
# 导入刚才保存的模型
with open('./%s.pkl' % data_type, 'rb') as f:
clf = pickle.load(f)
y_predict = clf.predict(x_test)
y_predict = [[clf.preprocess.label_set[i.argmax()]] for i in y_predict]
score = sum(y_predict == np.array(y_test)) / len(y_test)
print(score) # 0.9288