-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtokenizer.py
253 lines (234 loc) · 10.6 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddlenlp.transformers import BasicTokenizer, PretrainedTokenizer, WordpieceTokenizer
__all__ = ['SqueezeBertTokenizer', ]
class SqueezeBertTokenizer(PretrainedTokenizer):
"""
Constructs a SqueezeBert tokenizer. It uses a basic tokenizer to do punctuation
splitting, lower casing and so on, and follows a WordPiece tokenizer to
tokenize as subwords.
Args:
vocab_file (str): file path of the vocabulary
do_lower_case (bool): Whether the text strips accents and convert to
lower case. Default: `True`.
Default: True.
unk_token (str): The special token for unkown words. Default: "[UNK]".
sep_token (str): The special token for separator token . Default: "[SEP]".
pad_token (str): The special token for padding. Default: "[PAD]".
cls_token (str): The special token for cls. Default: "[CLS]".
mask_token (str): The special token for mask. Default: "[MASK]".
Examples:
.. code-block:: python
from paddlenlp.transformers import SqueezeBertTokenizer
tokenizer = SqueezeBertTokenizer.from_pretrained('SqueezeBert-small-discriminator')
# the following line get: ['he', 'was', 'a', 'puppet', '##eer']
tokens = tokenizer('He was a puppeteer')
# the following line get: 'he was a puppeteer'
tokenizer.convert_tokens_to_string(tokens)
"""
resource_files_names = {"vocab_file": "vocab.txt"} # for save_pretrained
pretrained_resource_files_map = {
"vocab_file": {
"squeezebert-uncased":
"squeezebert-uncased-vocab.txt",
"squeezebert-mnli":
"squeezebert-mnli-vocab.txt",
"queezebert-mnli-headless":
"queezebert-mnli-headless-vocab.txt",
}
}
pretrained_init_configuration = {
"squeezebert-uncased": {
"do_lower_case": True
},
"squeezebert-mnli": {
"do_lower_case": True
},
"queezebert-mnli-headless": {
"do_lower_case": True
}
}
def __init__(self,
vocab_file,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]"):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the "
"vocabulary from a pretrained model please use "
"`tokenizer = SqueezeBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
.format(vocab_file))
self.vocab = self.load_vocabulary(vocab_file, unk_token=unk_token)
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(
vocab=self.vocab, unk_token=unk_token)
@property
def vocab_size(self):
"""
return the size of vocabulary.
Returns:
int: the size of vocabulary.
"""
return len(self.vocab)
def _tokenize(self, text):
"""
End-to-end tokenization for SqueezeBert models.
Args:
text (str): The text to be tokenized.
Returns:
list: A list of string representing converted tokens.
"""
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def tokenize(self, text):
"""
End-to-end tokenization for SqueezeBert models.
Args:
text (str): The text to be tokenized.
Returns:
list: A list of string representing converted tokens.
"""
return self._tokenize(text)
def convert_tokens_to_string(self, tokens):
"""
Converts a sequence of tokens (list of string) in a single string. Since
the usage of WordPiece introducing `##` to concat subwords, also remove
`##` when converting.
Args:
tokens (list): A list of string representing tokens to be converted.
Returns:
str: Converted string from tokens.
"""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def num_special_tokens_to_add(self, pair=False):
"""
Returns the number of added tokens when encoding a sequence with special tokens.
Note:
This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this
inside your training loop.
Args:
pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the
number of added tokens in the case of a single sequence if set to False.
Returns:
Number of tokens added to sequences
"""
token_ids_0 = []
token_ids_1 = []
return len(
self.build_inputs_with_special_tokens(token_ids_0, token_ids_1
if pair else None))
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens.
A SqueezeBert sequence has the following format:
::
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of input_id with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
_cls = [self.cls_token_id]
_sep = [self.sep_token_id]
return _cls + token_ids_0 + _sep + token_ids_1 + _sep
def build_offset_mapping_with_special_tokens(self,
offset_mapping_0,
offset_mapping_1=None):
"""
Build offset map from a pair of offset map by concatenating and adding offsets of special tokens.
A SqueezeBert offset_mapping has the following format:
::
- single sequence: ``(0,0) X (0,0)``
- pair of sequences: `(0,0) A (0,0) B (0,0)``
Args:
offset_mapping_ids_0 (:obj:`List[tuple]`):
List of char offsets to which the special tokens will be added.
offset_mapping_ids_1 (:obj:`List[tuple]`, `optional`):
Optional second list of char offsets for offset mapping pairs.
Returns:
:obj:`List[tuple]`: List of char offsets with the appropriate offsets of special tokens.
"""
if offset_mapping_1 is None:
return [(0, 0)] + offset_mapping_0 + [(0, 0)]
return [(0, 0)] + offset_mapping_0 + [(0, 0)
] + offset_mapping_1 + [(0, 0)]
def create_token_type_ids_from_sequences(self,
token_ids_0,
token_ids_1=None):
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
A SqueezeBert sequence pair mask has the following format:
::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of token_type_id according to the given sequence(s).
"""
_sep = [self.sep_token_id]
_cls = [self.cls_token_id]
if token_ids_1 is None:
return len(_cls + token_ids_0 + _sep) * [0]
return len(_cls + token_ids_0 + _sep) * [0] + len(token_ids_1 +
_sep) * [1]
def get_special_tokens_mask(self,
token_ids_0,
token_ids_1=None,
already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``encode`` methods.
Args:
token_ids_0 (List[int]): List of ids of the first sequence.
token_ids_1 (List[int], optinal): List of ids of the second sequence.
already_has_special_tokens (bool, optional): Whether or not the token list is already
formatted with special tokens for the model. Defaults to None.
Returns:
results (List[int]): The list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return list(
map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0,
token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + (
[0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]