forked from tabakg/quantum_state_diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_state_diffusion.py
157 lines (129 loc) · 5.64 KB
/
quantum_state_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
'''
Quantum State Diffusion
Author: Gil Tabak
Date: Nov 3, 2016
This script uses the library sdeint to perform quantum state diffusion trajectories.
The inputs are purposely similar to qubit functions like mcsolve to make
integration easier later.
'''
import numpy as np
import sdeint
from scipy import sparse
import numpy.linalg as la
from time import time
from multiprocess import Pool
def qsd_solve(H, psi0, tspan, Ls, sdeint_method, obsq = None, normalized_equation = True,
normalize_state = True, ntraj=1, processes = 8, seed = 1):
'''
Args:
H: NxN csr matrix, dtype = complex128
Hamiltonian.
psi0: Nx1 csr matrix, dtype = complex128
input state.
tspan: numpy array, dtype = float
Time series of some length T.
Ls: list of NxN csr matrices, dtype = complex128
System-environment interaction terms (Lindblad terms).
sdeint_method (Optional) SDE solver method:
Which SDE solver to use. Default is sdeint.itoSRI2.
obsq (optional): list of NxN csr matrices, dtype = complex128
Observables for which to generate trajectory information.
Default value is None (no observables).
normalized (optional): Boolean
Use the normalized quantum state diffusion equations. (TODO: case False)
ntraj (optional): int
number of trajectories.
processes (optional): int
number of processes. If processes == 1, don't use multiprocessing.
Returns:
A dictionary with the following keys and values:
['psis'] -> np.array with shape = (ntraj,T,N) and dtype = complex128
['obsq_expects'] -> np.array with shape = (ntraj,T,len(obsq)) and dtype = complex128
'''
## Check dimensions of inputs. These should be consistent with qutip Qobj.data.
N = psi0.shape[0]
if psi0.shape[1] != 1:
raise ValueError("psi0 should have dimensions Nx1.")
a,b = H.shape
if a != N or b != N:
raise ValueError("H should have dimensions NxN (same size as psi0).")
for L in Ls:
a,b = L.shape
if a != N or b != N:
raise ValueError("Every L should have dimensions NxN (same size as psi0).")
## Determine seeds for the SDEs
if type(seed) is list or type(seed) is tuple:
assert len(seed) == ntraj
seeds = seed
elif type(seed) is int or seed is None:
np.random.seed(seed)
seeds = [np.random.randint(1000000) for _ in range(ntraj)]
else:
raise ValueError("Unknown seed type.")
T_init = time()
'''
We include a way to update L*psi and l = <psi,L,psi> when t changes.
This makes the code somewhat more efficient since these values are used
both for the drift f and the diffusion G terms.
'''
global t_old
global Lpsis
global ls
t_old = min(tspan) - 1.
def update_Lpsis_and_ls(psi,t):
global t_old
global Lpsis
global ls
if t != t_old:
Lpsis = [L.dot(psi) for L in Ls]
ls = [Lpsi.dot(psi.conj()) for Lpsi in Lpsis]
t_old = t
if normalized_equation: ## We'll include an option for non-normalized equations later...
def f(psi,t):
update_Lpsis_and_ls(psi,t)
return (-1j * H.dot(psi)
- sum([ 0.5*(L.H.dot(Lpsi) + np.conj(l)*l*psi)
- np.conj(l)*(Lpsi) for L,l,Lpsi in zip(Ls,ls,Lpsis)]) )
def G(psi,t):
update_Lpsis_and_ls(psi,t)
complex_noise = np.vstack([Lpsi - l*psi
for Lpsi,l in zip(Lpsis,ls)]) / np.sqrt(2.)
return np.vstack([complex_noise.real, 1j*complex_noise.imag]).T
else:
raise ValueError("Case normalized == False is not implemented.")
psi0_arr = np.asarray(psi0.todense()).T[0]
# '''single processing'''
# psis = np.asarray([ sdeint_method(f,G,psi0_arr,tspan) for _ in range(ntraj)])
'''multiprocessing'''
def SDE_helper(args,s):
'''Let's make different wiener increments for each trajectory'''
m = 2 * len(Ls)
N = len(tspan)-1
h = (tspan[N-1] - tspan[0])/(N - 1)
np.random.seed(s)
dW = np.random.normal(0.0, np.sqrt(h), (N, m))
return sdeint_method(*args,dW=dW,normalized=normalize_state)
pool = Pool(processes=processes,)
params = [[f,G,psi0_arr,tspan]] * ntraj
psis = np.asarray(pool.map( lambda z: SDE_helper(z[0],z[1]), zip(params,seeds) ))
## Obtaining expectations of observables
## maybe there is a more efficient way to do this, but for now it's OK
obsq_expects = (np.asarray([[ np.asarray([ob.dot(psi).dot(psi.conj())
for ob in obsq])
for psi in psis[i] ] for i in range(ntraj)])
if not obsq is None else None)
T_fin = time()
print ("Run time: ", T_fin - T_init, " seconds.")
return {"psis":psis, "obsq_expects":obsq_expects, "seeds":seeds}
if __name__ == "__main__":
psi0 = sparse.csr_matrix(([0,0,0,0,0,0,0,1.]),dtype=np.complex128).T
H = sparse.csr_matrix(np.eye(8),dtype=np.complex128)
Ls = [sparse.csr_matrix( np.diag([np.sqrt(i) for i in range(1,8)],k=1),dtype=np.complex128)]
tspan = np.linspace(0,10.0,1000)
obsq = [sparse.csr_matrix(np.diag([i for i in range(4)]*2),dtype=np.complex128)]
ntraj = 5
D = qsd_solve(H, psi0, tspan, Ls, sdeint.itoSRI2, obsq = obsq, ntraj = ntraj, normalize_state = True )
psis = D["psis"]
obsq_expects = D["obsq_expects"]
print ("Last point of traj 0: ",psis[0][-1])
print ("Norm of last point in traj 0: ",la.norm(psis[0][-1])) ## should be close to 1...