-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
38 lines (31 loc) · 1.15 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import io
import lmdb
from PIL import Image
import torch
from torchvision import transforms
import random
_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]
)
class MultiResolutionDataset(torch.utils.data.Dataset):
def __init__(self, path):
self.env = lmdb.open(path, max_readers=32, readonly=True, lock=False,
readahead=False, meminit=False,)
if not self.env:
raise IOError('Cannot open lmdb dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('total'.encode('utf-8')).decode('utf-8'))
self.width = int(txn.get('width'.encode('utf-8')).decode('utf-8'))
self.height = int(txn.get('height'.encode('utf-8')).decode('utf-8'))
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = '{}-{}-{}'.format(self.width, self.height, str(index).zfill(7)).encode('utf-8')
img_bytes = txn.get(key)
buffer = io.BytesIO(img_bytes)
img = Image.open(buffer)
img = _transform(img)
return img#, random.random()