-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.py
171 lines (133 loc) · 4.91 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pickle
import random
import socket
import threading
import time
from socket import *
from struct import pack
from IO import config
HOSTS = [
#'csl-411-05.csl.illinois.edu',
#'csl-411-06.csl.illinois.edu',
#
#'csl-411-07.csl.illinois.edu',
#'csl-411-08.csl.illinois.edu',
#
#'csl-411-09.csl.illinois.edu',
#'csl-411-10.csl.illinois.edu',
#
#'csl-411-13.csl.illinois.edu',
#'csl-411-14.csl.illinois.edu',
'aristotle.csl.illinois.edu'
]
PORT = 55558
class QueryThread(threading.Thread):
def __init__(self, host, port):
"""
Define thread for query.
:param pattern: query string, e.g. 'a'(raw string), 'a[a-z]b'(regex)
:param host: host of query target
:param port: port of query target
"""
super(QueryThread, self).__init__()
self.func_args = []
self.host = host
self.port = port
self.time_cost = -1.0 # record time cost for single thread
def run(self):
"""
Do the query as a single thread for a client.
:return: None
"""
logs = [] # the result of query
# do the query for each host
with socket(AF_INET, SOCK_STREAM) as s:
try:
t_start = time.time()
s.connect((self.host, self.port))
# send query pattern as json format
data = pickle.dumps(self.func_args)
print('[INFO] sending {} bytes to {}'.format(len(data), self.host))
s.sendall(data)
# receive return results
while True:
data = s.recv(4096)
if data:
msg = pickle.loads(data)
print('[INFO] query returns, result: ', msg.content)
else:
break
t_end = time.time()
self.time_cost = t_end - t_start
# handle the client exception
except (OSError, error) as e:
print('[ERROR]: ', self.host, e.__class__().__str__(), e.__str__())
class ClientProtocol(threading.Thread):
def __init__(self, host, port):
super(ClientProtocol, self).__init__()
self.socket = None
self.host = host
self.port = port
self.func_args = []
self.time_cost = -1
def connect(self):
self.socket = socket(AF_INET, SOCK_STREAM)
self.socket.connect((self.host, self.port))
def close(self):
self.socket.shutdown(socket.SHUT_WR)
self.socket.close()
self.socket = None
def send_data(self):
data = pickle.dumps(self.func_args)
with open(self.host + "_send_test.txt", "wb") as fp: # Pickling
pickle.dump(data, fp)
# use struct to make sure we have a consistent endianness on the length
length = pack('>Q', len(data))
# sendall to make sure it blocks if there's back-pressure on the socket
self.socket.sendall(length)
self.socket.sendall(data)
def run(self):
try:
t_start = time.time()
self.connect()
self.send_data()
t_end = time.time()
self.time_cost = t_end - t_start
except (OSError, error) as e:
print('[ERROR]: ', self.host, e.__class__().__str__(), e.__str__())
class Client:
def __init__(self, hosts=HOSTS, port=PORT):
self.hosts = hosts
self.port = port
def query(self, total_args):
"""
Do the query as a client. Kill the client after finishing the query.
:param pattern: query string, e.g. 'a'(raw string), 'a[a-z]b'(regex)
:return: None
"""
time_start = time.time() # record total parallel time
d_time = {} # record time cost for each thread
# assert worker for each query
workers = [ClientProtocol(host, PORT) for host in HOSTS]
num_hosts = len(HOSTS)
print('[INFO] Assign search_space to {} machines'.format(num_hosts))
for idx, total_arg in enumerate(total_args):
dst_worker_idx = idx % num_hosts
workers[dst_worker_idx].func_args.append(total_arg)
print('[INFO] Start sending parameters ...')
for worker in workers:
print('check HOST', worker.host)
worker.start()
# end each worker, record time cost
for worker in workers:
worker.join()
d_time[worker.host] = worker.time_cost
time_end = time.time() # # record total parallel time
print('Used %.4f hs.' % ((time_end - time_start) / 3600))
if __name__ == '__main__':
client = Client()
usr_configs_template = config.parse_config('./yaml/template.yaml')
search_space = config.parse_search_space('./yaml/search_space.yaml')
total_args = [[usr_configs_template, s] for s in search_space]
random.shuffle(total_args)
client.query(total_args)