-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
80 lines (58 loc) · 2.27 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import cv2
import numpy as np
import os
def face_recognition(pname):
totol_confidence = 0
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('.\\trainer\\trainer.yml')
cascadePath = ".\\trainer\\haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
#iniciate id counter
id = 0
# names related to ids: example ==> Sajjad: id=1, etc
names = [pname, 'Sajjad_RK', 'Reza','Neginnn', 'Osatad']
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
count = 0
while True:
ret, img =cam.read()
count+=1
# img = cv2.flip(img, -1) # Flip vertically
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
out_confidence = round((100 - confidence)*2+10)
# Check if confidence is less them 100 ==> "0" is perfect match
if (out_confidence > 40):
id = names[id]
confidence = " {0}%".format(out_confidence)
else:
id = "unknown"
confidence = " {0}%".format(out_confidence)
if(count%20==0):
print(id,out_confidence)
totol_confidence += out_confidence
cv2.putText(img, str(id), (x+5,y-5), font, 1, (0,0,255), 3)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 2)
cv2.imshow('camera',img)
k = cv2.waitKey(1) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program ")
cam.release()
cv2.destroyAllWindows()
return totol_confidence/count