-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_training.py
55 lines (38 loc) · 1.67 KB
/
face_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import cv2
import numpy as np
from PIL import Image
import os
def face_training():
# Path for face image database
path = '.\\dataset\\'
recognizer = cv2.face.LBPHFaceRecognizer_create()#for images recognizing
detector = cv2.CascadeClassifier(".\\trainer\\haarcascade_frontalface_default.xml") #for images crop
# function to get the images and label data
def getImagesAndLabels(path):
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids = []
''' input the pictures and put ids (from picture names) and pictures in two lists'''
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_numpy = np.array(PIL_img,'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[0])
faces = detector.detectMultiScale(img_numpy)
for (x,y,w,h) in faces:
faceSamples.append(img_numpy[y:y+h,x:x+w])
ids.append(id)
return faceSamples,ids
print ("\n [INFO] Training faces. It will take a few seconds. Wait ...")
faces,ids = getImagesAndLabels(path)
## Show the image from dataset
# while True:
# cv2.imshow('camera',faces[0])
# k = cv2.waitKey(10000) & 0xff # Press 'ESC' for exiting video
# if k == 27:
# break
recognizer.train(faces, np.array(ids))
# Save the model into trainer/trainer.yml
recognizer.write('.\\trainer\\trainer.yml')
# Print the numer of faces trained and end program
print("\n [INFO] {0} faces trained. Exiting Program".format(len(np.unique(ids))))
return True