forked from mikedurand/EnKFYampa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmvnrnd.f90
167 lines (144 loc) · 4.47 KB
/
mvnrnd.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
SUBROUTINE MVNRND(MU,SIGMA,R,CASES,M1,N1,M,N,SEED)
! ----------------------------------------------------------------------
!
! GENERATE RANDOM NUMBERS FROM A MULTIVARIATE RANDOM NORMAL DISTRIBUTION WITH
! SPECIFIED ERROR STATISTICS. IF ANY OFF-DIAGONAL ELEMENTS OF THE COVARIANCE
! MATRIX ARE NON-ZERO, A CHOLESKY SUBROUTINE IS CALLED TO FACTORIZE THE
! COVARIANCE. IF ALL OFF-DIAGONAL ELEMENTS ARE ZERO, THE FACTOR IS COMPUTED
! BY TAKING THE SQUARE ROOT OF THE DIAGONAL ELEMENTS.
! MU - VECTOR OF MEANS OF RANDOM NUMBERS OF WHICH VARIATES WILL BE GENERATED
! SIGMA - COVARIANCES OF RANDOM NUMBERS; FOR THIS VERSION OF THE CODE, THIS
! MUST BE A SQUARE MATRIX WITH NO OFF-DIAGONAL NON-ZERO ELEMENTS.
! R - OUTPUT ARRAY OF VARIATES WITH MEAN MU AND VARIANCE SIGMA
! CASES - NUMBER OF VARIATES OF VECTOR OF RANDOM NUMBERS TO BE GENERATED
! M1 - NUMBER OF ROWS OF MU
! N1 - NUMBER OF COLS OF MU (SHOULD BE 1)
! M - NUMBER OF ROWS OF SIGMA
! N - NUMBER OF COLS OF SIGMA
! SEED - NUMBER TO SEED THE NORMAL RANDOM FUNCTION
!
! CALLS: RAND_NORMAL, CHOLESKY
! CALLED FROM: ENKFGEN, KUPDATE, WRITEFORCINGFILE
!
! VERSION HISTORY: ADAPTED FROM MATLAB - MD - 05/2005
! MODIFIED TO TAKE SEED - MD - 07/2005
IMPLICIT NONE
INTEGER,INTENT(IN)::M1,N1,M,N,CASES,SEED
REAL,INTENT(IN)::MU(M1,N1),SIGMA(M,N)
INTEGER C,I,J
REAL,DIMENSION(:),ALLOCATABLE::Z
REAL,DIMENSION(:,:),ALLOCATABLE::MU2,MU3,T,ZR,TEMP
REAL,INTENT(OUT)::R(CASES,MAX(M1,N1))
LOGICAL :: USE_CHOL,C_IDEN
!MU IS M1XN1 AND SIGMA IS MXN
C=MAX(M1,N1)
IF(M1*N1.NE.C)THEN
PRINT *,'ERROR IN MVNRND! MU MUST BE A VECTOR'
STOP
END IF
IF(M.NE.N)THEN
PRINT *,'ERROR IN MVNRND! SIGMA MUST BE SQUARE'
STOP
END IF
IF(M.NE.C)THEN
PRINT *,'ERROR IN MVNRND! THE LENGTH OF MU MUST EQUAL THE NUMBER',&
'OF ROWS IN SIGMA'
STOP
END IF
ALLOCATE(T(M,N))
IF(M==1)THEN
T=SIGMA**0.5
ELSE
!DETERMINE WHETHER OR NOT THE COVARIANCE MATRIX HAS ANY OFF-DIAGONAL
! ELEMENTS THAT ARE NON-ZERO. IF SO, WE MUST USE THE CHOLESKY ROUTINE
! TO FACTORIZE THE COVARIANCE MATRIX. IF ALL OFF-DIAGONAL ELEMENTS ARE
! ZERO, OR IF THE COVARIANCE MATRIX CONSISTS OF IDENTICAL ENTRIES, TRIVIAL
! SOLUTIONS OF 'T' EXIST
!CHECK FOR IDENTICAL COVARIANCE MATRIX; IF ALL ELEMENTS ARE EQUAL TO FIRST
! ELEMENT, THEN I'LL ASSUME IT'S IDENTICAL.
C_IDEN=.TRUE.
DO I=1,M
DO J=1,N
IF(SIGMA(I,J).NE.SIGMA(1,1)) THEN
C_IDEN=.FALSE.
END IF
END DO
END DO
IF(C_IDEN.EQ..TRUE.)THEN
!IF THE MATRIX CONSISTS OF IDENTICAL ENTRIES, DEFINITELY DON'T USE CHOLESKY
USE_CHOL=.FALSE.
ELSE
!IF THE MATRIX HAS NON-IDENTICAL ENTRIES, LOOK FOR NON-DIAGONAL ELEMENTS
! THAT ARE NON-ZERO
USE_CHOL=.FALSE.
DO I=1,M
DO J=1,N
IF (SIGMA(I,J).GT.0.AND.I.NE.J)THEN
!SINCE AT LEAST ONE NON-DIAGONAL ELEMENT IS NOT EQUAL TO ZERO, WE MUST
! USE THE CHOLESKY ROUTINE
USE_CHOL=.TRUE.
END IF
END DO
END DO
END IF
IF(USE_CHOL.EQ..FALSE.)THEN
!DON'T USE CHOLESKY...
IF(C_IDEN.EQ..TRUE.)THEN
!SINCE ALL ELEMENTS OF COVARIANCE MATRIX ARE IDENTICAL, 'T' IS TRIVIAL:
! ALL ELEMENTS OF THE FIRST ROW ARE THE SQUARE ROOT OF ANY OF THE
! TERMS.
DO I=1,M
DO J=1,N
IF (I.EQ.1) THEN
T(I,J)=SIGMA(1,1)**0.5
ELSE
T(I,J)=0.
END IF
END DO
END DO
ELSE
!SINCE ALL OFF-DIAGONAL TERMS ARE ZERO, 'T' IS TRIVIAL: WE CAN COMPUTE
! THE SQUARE ROOT OF OF THE DIAGONAL ONLY
DO I=1,M
DO J=1,N
IF (I.EQ.J) THEN
T(I,J)=SIGMA(I,I)**0.5
ELSE
T(I,J)=0.
END IF
END DO
END DO
END IF
ELSE
!WE MUST USE CHOLESKY
IF(M.NE.N)THEN
PRINT *, 'MVNRND: CHOLESKY ONLY WORKS FOR SQUARE MATRICES! ABORTING'
ELSE
CALL CHOLESKY(SIGMA,T,M)
END IF
END IF
END IF
IF(M1==C.AND.C>1) THEN !IE IF MU IS A COLUMN VECTOR, TRANSPOSE IT
ALLOCATE(MU2(N1,M1))
MU2=TRANSPOSE(MU)
ELSE
ALLOCATE(MU2(M1,N1))
MU2=MU
END IF
ALLOCATE(MU3(CASES,C))
DO I=1,C
DO J=1,CASES
MU3(J,I)=MU2(1,I)
END DO
END DO
ALLOCATE(Z(CASES*M))
CALL RAND_NORMAL(CASES*M,Z,SEED)
ALLOCATE(ZR(CASES,M))
IF(M>1)THEN
ZR=RESHAPE(Z,(/CASES,M/))
ELSE
ZR(:,1)=Z(:)
END IF
R=MATMUL(ZR,T)+MU3
DEALLOCATE(T,MU2,MU3,Z,ZR)
END SUBROUTINE MVNRND