forked from cloudera/CML_AMP_Knowledge_Graph_Backed_RAG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.project-metadata.yaml
61 lines (57 loc) · 2.09 KB
/
.project-metadata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
name: Question Answering ChatBot powered by Knowledge Graph
description: |
This AMP demonstrates how to leverage knowledge graph to enhance the quality and information of the answers produced by LLM in a RAG pipeline. The knowledge base consits of a sizable corpus of AI/ML related papers from arXiv. The knwoledge graph captures additional information like citations between the papers, authors and the categories that they belong to.
author: Cloudera Inc.
specification_version: 1.0
prototype_version: 1.0
date: "2024-07-18"
environment_variables:
HF_TOKEN:
description: "Hugging Face API token"
required: true
runtimes:
- editor: PBJ Workbench
kernel: Python 3.10
edition: Nvidia GPU
tasks:
- type: run_session
name: Install Dependencies
script: 0_session-install-dependencies/install-dependencies.py
short_summary: Install Dependencies
kernel: python3
cpu: 1
memory: 8
gpu: 1
- type: create_job
name: Download and quantise the LLM model and embedding model
script: 1_download-models/download.py
short_summary: Download the model/embedding model from hugging face and quantise the LLM model for future in-session use.
entity_label: download-models-kg-amp
arguments: None
kernel: python3
cpu: 2
memory: 8
gpu: 1
- type: run_job
entity_label: download-models-kg-amp
- type: create_job
name: Build the Knowledge Graph
script: 2_build-knowledge-graph/ingest-arxiv-data.py
short_summary: Ingest arXiv papers, chunk them and store embedding vectors in a graph database along with author, citation and category information.
entity_label: build-graph-kg-amp
arguments: None
kernel: python3
cpu: 2
memory: 16
gpu: 1
- type: run_job
entity_label: build-graph-kg-amp
- type: start_application
name: Knowledge Graph powered RAG
script: 3_launch_application/streamlit_entrypoint.py
short_summary: Run the frontend application that uses the Knowledge Graph backed RAG pipeline to answer questions.
subdomain: ai-question-answering
kernel: python3
cpu: 2
memory: 16
gpu: 1