-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathharddrive.py
287 lines (225 loc) · 9.58 KB
/
harddrive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import sys
print (sys.path)
import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import stats
import statsmodels.api as sm
import warnings
from itertools import product
from datetime import datetime
warnings.filterwarnings('ignore')
plt.style.use('seaborn-poster')
import os
import glob
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import VarianceThreshold
import seaborn as sns
from sqlalchemy import create_engine
import pyspark.sql.functions as F
#%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
from pandas.plotting import scatter_matrix
filename = 'harrdrive_edited.csv'
filename_edited ='harrdrive_manufacturers.csv'
#df = pd.read_csv(filename,chunksize=10000)
def matchManufacturer(substring):
manufacturers = {
"HU": "HGST",
"ST": "Seagate",
"WD": "WDC",
"MD": "Toshiba",
"HM": "HGST",
"HD": "HGST",
"HGST": "HGST",
"TOSHIBA": "TOSHIBA",
"SAMSUNG": "SAMSUNG",
"Samsung": "Samsung"
}
manufacturer = ''
substring = substring.strip()
for k, v in manufacturers.items():
if substring.startswith(k):
manufacturer = manufacturers.get(k, "")
# print ("starts withhh " + substring)
# manufacturer = manufacturers.get(k, "")
return manufacturer
elif substring == v:
# manufacturer = manufacturers.get(k, "")
# print("equal to " + substring)
return substring
def failure_rates():
try:
connection = pymysql.connect(host='localhost',
database='thesis_harddrive',
user='root',
password='')
if connection.open:
db_Info = connection.get_server_info()
print("Connected to MySQL database... MySQL Server version on ",db_Info)
cursor = connection.cursor()
cursor.execute("select * from failure_rates order by model;")
record = cursor.fetchone()
print ("Your connected to - ", record)
finally:
if(connection.open):
cursor.close()
connection.close()
print("MySQL connection is closed")
def consolidate_csv():
pwd = r'C:\Users\Administrator\Documents\done'
os.chdir(pwd)
extension = 'csv'
processed_files = [i for i in glob.glob('*.{}'.format(extension))]
#combine all files in the list
combined_csv = pd.concat([pd.read_csv(f) for f in processed_files])
#export to csv
combined_csv.to_csv( "harddrive_combined_2018q1-2.csv", index=False, encoding='utf-8-sig')
#pass new file name for feature extraction (combines files)
def feature_extraction_constants(new_filename):
data = pd.read_csv(new_filename)
train_features, test_features, train_labels, test_labels=train_test_split(
data.drop(labels=['failure','date','model', 'MFG','Datetime','serial_number', 'model_new', 'length','split','Unnamed: 0', 'Unnamed: 0.1', 'Unnamed: 0.1.1'], axis=1),
data['failure'],
test_size=0.2,
random_state=41)
constant_filter = VarianceThreshold(threshold=0)
constant_filter.fit(train_features)
len(train_features.columns[constant_filter.get_support()])
constant_columns = [column for column in train_features.columns
if column not in train_features.columns[constant_filter.get_support()]]
train_features = train_features.drop(constant_columns,axis=1)
test_features = test_features.drop(constant_columns,axis=1)
# create quasi constant filter
qconstant_filter = VarianceThreshold(threshold=0.03)
qconstant_filter.fit(train_features)
len(train_features.columns[qconstant_filter.get_support()])
qconstant_columns = [column for column in train_features.columns
if column not in train_features.columns[qconstant_filter.get_support()]]
# drop least informative columns from original dataset
data = data.drop(['Unnamed: 0.1', 'Unnamed: 0.1.1', 'split','length'], axis=1)
data = data.drop(constant_columns, axis=1)
data = data.drop(qconstant_columns, axis=1)
data.to_csv("harddrive_features.csv", header=True, index = False, mode = 'a')
def feature_extraction_duplicates(new_filename):
data = pd.read_csv(new_filename)
print(data.shape)
train_features, test_features, train_labels, test_labels=train_test_split(
data.drop(labels=['failure','date','model', 'MFG','Datetime','serial_number', 'model_new' ], axis=1),
data['failure'],
test_size=0.2,
random_state=41)
train_features_T = train_features.T
train_features_T.shape
print("here")
print(train_features_T.duplicated().sum())
print("after print")
unique_features = train_features_T.drop_duplicates(keep='first').T
print(unique_features.shape)
duplicated_features = [dup_col for dup_col in train_features.columns if dup_col not in unique_features.columns]
print(duplicated_features)
def clean():
filename = r"C:\Users\Administrator\Documents\thesis\harddrive_final.csv"
df = pd.read_csv(filename)
#drop nan values and columns with more than 75% nan values
df = df.dropna(axis='columns', how='all')
df = df.dropna(axis='columns', thresh = int(0.75 * len(df)))
#fill remaining missing columns with mean of column
colnames_numerics_only = df.select_dtypes(include=[np.number]).columns.tolist()
for column in colnames_numerics_only:
df[column] = df[column].fillna(df.loc[:,column].mean())
#change date type to datetime
df['Datetime'] = pd.to_datetime(df['date'])
df.to_csv(filename, index=False)
def load_intn_sql_lite():
filename= r"harddrive.csv"
csv_database = create_engine('sqlite:///csv_database.db')
i = 0
j = 1
for df in pd.read_csv(filename, chunksize=100000, iterator=True):
df = df.rename(columns={c: c.replace(' ', '') for c in df.columns})
df.index += j
i+=1
df.to_sql('drives', csv_database, if_exists='append')
j = df.index[-1] + 1
def variable_correlation(new_filename):
df = pd.read_csv(new_filename)
print(df.head())
print(df.columns)
df = df.drop(['date', 'Datetime','model','model_new'], axis=1)
raw_list = [col for col in df.columns if 'normalized' in col]
print(raw_list)
df = df.drop(raw_list,axis = 1)
##Using Pearson Correlation
plt.figure(figsize=(12,10))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()
#Correlation with output variable
cor_target = abs(cor["failure"])
#Selecting highly correlated features
relevant_features = cor_target[cor_target>0.5]
print(relevant_features)
def manufacturer_distribution():
df = sqlContext.read.load('harddrive.csv', delimiter=';',format='com.databricks.spark.csv', header='true', inferSchema='true')
dg = df.groupBy("MFG").agg(F.countDistinct("model_new"))
#*****************************************************************************************************
#load_intn_sql_lite()
#clean()
#consolidate_csv()
#feature_extraction_constants(r"C:\Users\Administrator\Documents\harddrive_combined.csv")
#feature_extraction_duplicates(r"C:\Users\Administrator\Documents\harddrive.csv")
#variable_correlation(r"C:\Users\Administrator\Documents\harddrive.csv")
#consolidate_csv()
#calculate failure rates mysql
#df = pd.read_csv("harddrive_combined.csv")
#drop nan values and columns with more than 75% nan values
#df = df.dropna(axis='columns', how='all')
#df = df.dropna(axis='columns', thresh = int(0.75 * len(df)))
#fill remaining missing columns with mean of column
#colnames_numerics_only = df.select_dtypes(include=[np.number]).columns.tolist()
#for column in colnames_numerics_only:
# df[column] = df[column].fillna(df.loc[:,column].mean())
#chnage date type to datetime
#df['Datetime'] = pd.to_datetime(df['date'])
#strip leading and trailing spaces in model number
#df['model'] = df['model'].str.strip()
#replace 9Hitachi with HGST
#df['model_new'] = df['model'].str.replace('Hitachi','HGST')
#dfread = dfread.drop(['Unnamed: 0','Unnamed: 0.1','Unnamed: 0.1.1'], axis=1)
#read file in chunck to add manufacturer column
#dfread = pd.read_csv(r"C:\Users\Administrator\Documents\harddrive.csv", iterator=True, chunksize=700000)
#df= pd.read_csv(r"C:\Users\Administrator\Documents\null.csv")
#i = 0
##for df in dfread:
###while True:
### df = dfread.get_chunk(100)
### print(df.size + "this si the size")
##
## df.drop(['Unnamed: 0','Unnamed: 0.1','Unnamed: 0.1.1'], axis=1)
#df['length'] = 0
#df['MFG'] = ""
#df['split'] = ""
#for modell in df['model_new']:
# print("iteration " , i)
# print(modell)
# df['length'][i] = len(modell.split(' '))
# if df['length'][i] > 1:
# substring = modell.split()[0]
# # str(df['model_new'][i].map(lambda x: x.split(' ')[0]))
# df['split'][i] = substring
# #
# else:
# substring = str(modell)
# df['split'][i] = "no "
# # #
# df['MFG'][i] = matchManufacturer(substring.strip())
# #
# i+=1
#df.to_csv("filled_mfg.csv",index = False, mode = 'a',header=True)
#