-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
52 lines (37 loc) · 1.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# This is a modified version of the original file where we can use our own pretrained embeddings
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class CNN_Text(nn.Module):
def __init__(self, args):
super(CNN_Text, self).__init__()
self.args = args
V = args.embed_num
D = args.embed_dim
C = args.class_num
Ci = 1
Co = args.kernel_num
Ks = args.kernel_sizes
#### NEW ####
# Load pretrained embeddings
# code from https://stackoverflow.com/questions/49710537/pytorch-gensim-how-to-load-pre-trained-word-embeddings/49802495
if args.embeddings is None:
self.embed = nn.Embedding(V, D)
else:
self.embed = nn.Embedding.from_pretrained(torch.FloatTensor(args.text_field.vocab.vectors))
#### NEW ####
self.convs = nn.ModuleList([nn.Conv2d(Ci, Co, (K, D)) for K in Ks])
self.dropout = nn.Dropout(args.dropout)
self.fc1 = nn.Linear(len(Ks) * Co, C)
if self.args.static:
self.embed.weight.requires_grad = False
def forward(self, x):
x = self.embed(x) # (N, W, D)
x = x.unsqueeze(1) # (N, Ci, W, D)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs] # [(N, Co, W), ...]*len(Ks)
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] # [(N, Co), ...]*len(Ks)
x = torch.cat(x, 1)
x = self.dropout(x) # (N, len(Ks)*Co)
logit = self.fc1(x) # (N, C)
return logit