Skip to content

Latest commit

 

History

History
469 lines (426 loc) · 33.7 KB

bitlogic.adoc

File metadata and controls

469 lines (426 loc) · 33.7 KB

DRAFT of 2020 May 28 Markku-Juhani O. Saarinen <[email protected]>

On RISC-V Logic Optimization for Cryptography

Many cryptographic functions require computation of Boolean functions from n bits to m bits. Sometimes these functions are large enough to have been traditionally implemented with table lookups, but timing side-channel considerations force their implementation in a bit-sliced manner.

The efficiency of bit-sliced logic is affected by three main factors:

  1. The number of instructions.

  2. Compressed (16-bit) and uncompressed (32-bit) instructions.

  3. Logic depth for superscalar processing.

Boolean Function Primitives

The truth table of any 2-input Boolean function has 22=4 bits. We write the truth table (TT) with the result of all-zero inputs on the right (at "bit 0"). All arithmetic instructions in RISC-V crypto extension have two source operands, even if they only use one.

Table 1. Sixteen two-input Boolean functions, including redundant ones.
TT C Expr Assembler Type

0000

0

MV ZERO

pseudo

0001

~(x | y)

OR + NOT

n/a ("NOR")

0010

y &~ x

ANDN

ext (b)

0011

~x

NOT

pseudo

0100

x &~ y

ANDN

ext (b)

0110

x ^ y

XOR

base (c)

0101

~y

NOT

pseudo

0111

~(x & y)

AND + NOT

n/a ("NAND")

1000

x & y

AND

base (c)

1001

x ^~ y

XNOR

ext (b)

1010

y

MV

pseudo

1011

y |~ x

ORN

ext (b)

1100

x

MV

pseudo

1101

x |~ y

ORN

ext (b)

1110

x | y

OR

base (c)

1111

~0

NOT ZERO

pseudo

Pseudo: In RISC-V the register X0 is permanently set to zero. Moving the contents of a register to another is performed with an MV pseudoinstruction, which has a compressed (16-bit rather than 32-bit) equivalent C.MV — both are usually encoded as addition with zero). Single-operand one’s complement NOT is implemented with immediate exclusive-or XORI rd, rs1, -1, which does not have an equivalent form in the compressed instruction set. However one may keep the value ~0=-1 in an auxiliary register, after which compressed C.XOR always suffices.

Base: The base set instruction set provides the basic commutative Boolean logic operations AND, OR, XOR, each of which has compressed (half-size) instruction counterparts C.AND, C.OR, X.XOR respectively. Note that compressed forms can only be used if the destination operand is the same as one of the input operands (corresponding to C operators &=, |=, and ^=.)

Extension: The Bitmanip and Crypto extensions add three counterparts to these instructions by inverting the second operand: ANDN (&~), ORN (|~), and XNOR (^~). Even though grouping the NOT (~) with the main operation makes no difference in C syntax, we use this notation and hope that compiler will understand this relationship and can use the correct instructions. These operations have no compressed form. ANDN and ORN are non-commutative, so these correspond to five two-input Boolean logic functions.

Not available: Together the trivial (6), base (3), and expanded (5) make up 14 of the 16 possible functions. Two functions that are left out are NOR and NAND, which need to be constructed from two instructions.

Would "NOR" and "NAND" instructions help?

Not really, at least for bigger bitsliced functions. To see this, consider a bitsliced circuit (directed acyclic graph) implementing an n-to-m bit Boolean function, where each gate has fan-in 2 and unlimited fan-out.

Out of the 16 Boolean functions, six can be eliminated trivially. To eliminate a NOT gate, modify all gates that it is driving (e.g. changing an AND into an ANDN, or vice versa).

Furthermore, any gate (except those directly driving the m output bits) can be changed into its inverted counterpart (fully inverted truth table) by modifying gates "downstream" in the circuit.

Therefore it is possible to replace all (two-instruction) "NOR" functions ~(x | y) with OR functions x | y and similarly "NAND" functions ~(x & y) with simple AND function x & y by changing all gates driven by them. Starting from input and proceeding in the acyclic graph, we see that at most m additional output inverters are required after this change is applied to a circuit; the structure and size of the circuit remains the otherwise the same in this transformation.

In fact it may be preferable to replace XNOR functions x ^~ y with plain XOR functions x ^ y since a compressed form (C.XOR) is available for it. It may also preferable to replace ORN (x |~ y, y |~ x) with its inverse ANDN (y &~ x, x &~ y), for portability. ANDN (also called BIC, "bit clear") is available on Intel and ARM platforms while ORN is not. Any circuit can be transformed to use the four-gate set XOR, AND, OR, ANDN with at most "m" additinal gates (NOT gates on outputs).

Three-input ("Ternary") Boolean Functions

We list below optimized expressions for all 3-input Boolean functions; since the truth table is 23=8 bits, there are 28=256 such functions in all. There are several, sometimes contradictory optimality metrics for a function, and even with those there many equivalent expressions.

We used the following selection criteria in our exhaustive search. In order of importance, select expression with..

  1. The smallest number of instructions (Len).

  2. Smallest circuit depth (Dep, measured with longest topological path).

  3. Minimum code size.

Code size is measured assuming that compressed instructions C.AND, C.OR, and C.XOR can be used and input variables can be overwritten. Note that this is among all code sequences with the same length and depth.

Two expressions are given; one for base instruction set (with compression) and another for expanded

Example

SHA-2 Algorithms utilize two main nonlinear functions, Ch and Maj, defined in Section 4.1 of FIPS 180-4 as:

Ch(x,y,z)  = (x & y) ^ (~x & z)            // 4 insn: 2 * AND, 1 * XOR, 1 NOT
Maj(x,y,z) = (x & y) ^ (x & z) ^ (y & z)   // 5 insn: 3 * AND, 2 * XOR

One can see that AND, NOT sequence (~x & z) in Ch can be written using a single ANDN instruction (z &~ x) from the extension, reducing the instruction count to 3. Are further optimizations possible?

One can evaluate the truth tables bit-by-bit, or in "parallel" by setting x=0xAA, y=0xCC, z=0xF0 and computing the 8-bit result. This yields truth tables for Ch: 0xD8, 11011000 and Maj: 0xE8, 11101000.

It appears that the expression Ch = ((x & y) | (z &~ x)) is optimal if &~ is a single instruction (ANDN). However the table also gives a three-instruction sequence that uses just the base set: Ch(x,y,z) = (z ^ (x & (y ^ z))). One may ask why is this not the "best" for the extension too - it’s shorter! This is because of our prioritization of depth over opcode length:

    Extended:                   Base set:
    ((x & y) | (z &~ x))        (z ^ (x & (y ^ z)))

                                    [Ch]
                                      \
         [Ch]                         (^)
            \                         / \
            (|)                      z   (&)
           /   \                         / \
         (&)   (&~) <-ANDN              x  (^)
         / \   / \                         / \
        x   y z   x                       y   z

        Len=3 Dep=2                  Len=3 Dep=3

For Maj we obtain the same 4-instruction sequence for both base and extended instruction set: Maj(x,y,z) = (x ^ ((x ^ y) & (x ^ z))). If the input variables can be overwritten, this sequence could be implemented (using pseudocode):

    C.XOR   z, z, x     //  z ^= x  --  rs1=rd for compressed
    C.XOR   y, y, x     //  y ^= x
    C.AND   y, y, z     //  y &= z
    C.XOR   x, x, y     //  x ^= y  --  the result is in x

With C extension compression this sequence is 4 * 2 = 8 bytes, the size of two "normal" instructions. This is probably why it was chosen from the set of all Len=3 and Dep=3 sequences.

In a typical SHA-2 implementation not all input variables can be overwritten. However the compressed form selection criteria has least priority (among otherwise equivalent candidates). It is difficult to predict the stack load/store sequence so giving the Compiler a form that allows the use of compressed instructions is generally preferable.

So, based on these considerations, and prioritizing length over depth, we recommend:

Ch(x,y,z)  = (z ^ (x & (y ^ z)))           // 3 insn: 1 * AND, 2 * XOR
Maj(x,y,z) = (x ^ ((x ^ y) & (x ^ z)))     // 4 insn: 1 * AND, 3 * XOR
Table 2. 256 three-input Boolean fuctions with expanded and base logic instructions.
Numb TT Len Dep C expr (expanded) Len Dep C expr (base set)

0x00

00000000

0

0

0

0

0

0

0x01

00000001

3

2

(~x &~ (y | z))

3

3

~(z | (x | y))

0x02

00000010

2

2

(x &~ (y | z))

3

3

(x ^ (x & (y | z)))

0x03

00000011

2

2

~(y | z)

2

2

~(y | z)

0x04

00000100

2

2

(y &~ (x | z))

3

3

(y ^ (y & (x | z)))

0x05

00000101

2

2

~(x | z)

2

2

~(x | z)

0x06

00000110

2

2

((x ^ y) &~ z)

3

2

((x | z) ^ (y | z))

0x07

00000111

3

2

(~z &~ (x & y))

3

3

~(z | (x & y))

0x08

00001000

2

2

((x & y) &~ z)

3

2

((x & y) & (x ^ z))

0x09

00001001

2

2

((x ^~ y) &~ z)

3

3

~(z | (x ^ y))

0x0A

00001010

1

1

(x &~ z)

2

2

(x ^ (x & z))

0x0B

00001011

2

2

((x |~ y) &~ z)

4

4

~(z | (y ^ (x & y)))

0x0C

00001100

1

1

(y &~ z)

2

2

(y ^ (y & z))

0x0D

00001101

2

2

((y |~ x) &~ z)

4

3

(z ^ (~x | (y | z)))

0x0E

00001110

2

2

((x | y) &~ z)

3

2

((x | y) & ~z)

0x0F

00001111

1

1

~z

1

1

~z

0x10

00010000

2

2

(z &~ (x | y))

3

3

(z ^ (z & (x | y)))

0x11

00010001

2

2

~(x | y)

2

2

~(x | y)

0x12

00010010

2

2

((x ^ z) &~ y)

3

2

((x | y) ^ (y | z))

0x13

00010011

3

3

~(y | (x & z))

3

3

~(y | (x & z))

0x14

00010100

2

2

((y ^ z) &~ x)

3

2

((x | y) ^ (x | z))

0x15

00010101

3

2

(~x &~ (y & z))

3

3

~(x | (y & z))

0x16

00010110

4

3

(z ^ ((x ^ y) | (x & z)))

4

3

(z ^ ((x ^ y) | (x & z)))

0x17

00010111

4

3

(x ^~ ((x ^ y) & (x ^ z)))

5

4

((x | y) ^ (z | (y ^ ~x)))

0x18

00011000

3

2

((x ^ z) & (y ^ z))

3

2

((x ^ z) & (y ^ z))

0x19

00011001

3

2

((x ^~ y) &~ (x & z))

4

3

(y ^ (~x | (y & z)))

0x1A

00011010

3

2

((x |~ y) & (x ^ z))

3

3

(z ^ (x | (y & z)))

0x1B

00011011

3

2

((x | y) ^ (z |~ x))

4

3

((x | y) ^ (z | ~x))

0x1C

00011100

3

2

((y |~ x) & (y ^ z))

3

3

(z ^ (y | (x & z)))

0x1D

00011101

3

2

((x | y) ^ (z |~ y))

4

3

(~x ^ (y & (x ^ z)))

0x1E

00011110

2

2

(z ^ (x | y))

2

2

(z ^ (x | y))

0x1F

00011111

3

2

(~z |~ (x | y))

3

3

~(z & (x | y))

0x20

00100000

2

2

(z & (x &~ y))

3

3

(z & (x ^ (x & y)))

0x21

00100001

2

2

((x ^~ z) &~ y)

3

3

~(y | (x ^ z))

0x22

00100010

1

1

(x &~ y)

2

2

(x ^ (x & y))

0x23

00100011

2

2

((x |~ z) &~ y)

4

3

(y ^ ((x | y) | ~z))

0x24

00100100

3

2

((x ^ y) & (y ^ z))

3

2

((x ^ y) & (y ^ z))

0x25

00100101

3

2

((x ^~ z) &~ (x & y))

4

3

(z ^ (~x | (y & z)))

0x26

00100110

3

2

((x ^ y) & (x |~ z))

3

3

(y ^ (x | (y & z)))

0x27

00100111

3

2

((x & y) ^ (x |~ z))

4

3

((x | z) ^ (y | ~x))

0x28

00101000

2

2

(x & (y ^ z))

2

2

(x & (y ^ z))

0x29

00101001

4

3

(z ^ ((y & z) |~ (x ^ y)))

5

3

((x | ~z) & ((x ^ y) ^ ~z))

0x2A

00101010

2

2

(x &~ (y & z))

3

3

(x ^ (z & (x & y)))

0x2B

00101011

4

3

(x ^~ ((x ^ y) | (x ^ z)))

5

3

(~x ^ ((x ^ y) | (x ^ z)))

0x2C

00101100

3

2

((x | y) & (y ^ z))

3

2

((x | y) & (y ^ z))

0x2D

00101101

2

2

(z ^ (y |~ x))

3

3

(z ^ (y | ~x))

0x2E

00101110

3

2

((x | y) ^ (y & z))

3

2

((x | y) ^ (y & z))

0x2F

00101111

2

2

((x &~ y) |~ z)

4

3

((x ^ (x & y)) | ~z)

0x30

00110000

1

1

(z &~ y)

2

2

(z ^ (y & z))

0x31

00110001

2

2

((z |~ x) &~ y)

4

3

(y ^ (~x | (y | z)))

0x32

00110010

2

2

((x | z) &~ y)

3

3

(y ^ (z | (x | y)))

0x33

00110011

1

1

~y

1

1

~y

0x34

00110100

3

2

((y ^ z) &~ (x & y))

3

3

(y ^ (z | (x & y)))

0x35

00110101

3

3

(x ^~ (z & (x ^ y)))

4

3

(~x ^ (z & (x ^ y)))

0x36

00110110

2

2

(y ^ (x | z))

2

2

(y ^ (x | z))

0x37

00110111

3

3

~(y & (x | z))

3

3

(y ^ (z | (x |~ y)))

0x38

00111000

3

2

((x | z) & (y ^ z))

3

2

((x | z) & (y ^ z))

0x39

00111001

2

2

(y ^ (z |~ x))

3

3

(y ^ (z | ~x))

0x3A

00111010

3

3

(y ^ (z | (x ^ y)))

3

3

(y ^ (z | (x ^ y)))

0x3B

00111011

2

2

((x &~ z) |~ y)

4

4

(y ^ (z | ~(x & y)))

0x3C

00111100

1

1

(y ^ z)

1

1

(y ^ z)

0x3D

00111101

3

2

((y ^ z) |~ (x | y))

4

3

((y ^ z) | ~(x | y))

0x3E

00111110

3

2

((x &~ y) | (y ^ z))

4

3

((y & z) ^ (z | (x | y)))

0x3F

00111111

2

2

~(y & z)

2

2

~(y & z)

0x40

01000000

2

2

(z & (y &~ x))

3

2

((x ^ y) & (y & z))

0x41

01000001

2

2

((y ^~ z) &~ x)

3

3

~(x | (y ^ z))

0x42

01000010

3

2

((x ^ y) & (x ^ z))

3

2

((x ^ y) & (x ^ z))

0x43

01000011

3

2

((y ^~ z) &~ (x & y))

4

3

~((x & y) | (y ^ z))

0x44

01000100

1

1

(y &~ x)

2

2

(y ^ (x & y))

0x45

01000101

2

2

((y |~ z) &~ x)

4

3

(x ^ ((x | y) | ~z))

0x46

01000110

3

2

((x ^ y) &~ (x & z))

3

3

(x ^ (y | (x & z)))

0x47

01000111

3

2

((x & y) ^ (y |~ z))

4

4

(x ^ (y | (z ^ ~x)))

0x48

01001000

2

2

(y & (x ^ z))

2

2

(y & (x ^ z))

0x49

01001001

4

3

(z ^ ((x & z) |~ (x ^ y)))

5

4

(z ^ ((x & z) | (y ^ ~x)))

0x4A

01001010

3

2

((x | y) & (x ^ z))

3

2

((x | y) & (x ^ z))

0x4B

01001011

2

2

(z ^ (x |~ y))

3

3

(z ^ (x | ~y))

0x4C

01001100

2

2

(y &~ (x & z))

3

3

(y ^ (z & (x & y)))

0x4D

01001101

4

3

(z ^~ ((x ^ y) & (x ^ z)))

5

4

(x ^ ((x ^ y) | (z ^ ~x)))

0x4E

01001110

3

2

((x | y) ^ (x & z))

3

2

((x | y) ^ (x & z))

0x4F

01001111

2

2

((y &~ x) |~ z)

4

3

((y ^ (x & y)) | ~z)

0x50

01010000

1

1

(z &~ x)

2

2

(z ^ (x & z))

0x51

01010001

2

2

((z |~ y) &~ x)

4

3

(x ^ ((x | z) | ~y))

0x52

01010010

3

2

((x ^ z) &~ (x & y))

3

3

(x ^ (z | (x & y)))

0x53

01010011

3

3

(y ^~ (z & (x ^ y)))

4

4

(x ^ (z | (y ^ ~x)))

0x54

01010100

2

2

((y | z) &~ x)

3

2

(~x & (y | z))

0x55

01010101

1

1

~x

1

1

~x

0x56

01010110

2

2

(x ^ (y | z))

2

2

(x ^ (y | z))

0x57

01010111

3

2

(~x |~ (y | z))

3

3

~(x & (y | z))

0x58

01011000

3

2

((x ^ z) & (y | z))

3

2

((x ^ z) & (y | z))

0x59

01011001

2

2

(x ^ (z |~ y))

3

3

(x ^ (z | ~y))

0x5A

01011010

1

1

(x ^ z)

1

1

(x ^ z)

0x5B

01011011

3

2

((x ^ z) |~ (x | y))

4

3

((x ^ z) | ~(x | y))

0x5C

01011100

3

3

(x ^ (z | (x ^ y)))

3

3

(x ^ (z | (x ^ y)))

0x5D

01011101

2

2

((y &~ z) |~ x)

4

3

(~x | (y & (x ^ z)))

0x5E

01011110

3

2

((y &~ x) | (x ^ z))

4

3

((x & z) ^ (z | (x | y)))

0x5F

01011111

2

2

~(x & z)

2

2

~(x & z)

0x60

01100000

2

2

(z & (x ^ y))

2

2

(z & (x ^ y))

0x61

01100001

4

3

((x ^~ y) ^ (z | (x & y)))

5

3

((y ^ ~x) ^ (z | (x & y)))

0x62

01100010

3

2

((x ^ y) & (x | z))

3

2

((x ^ y) & (x | z))

0x63

01100011

2

2

(y ^ (x |~ z))

3

3

(y ^ (x | ~z))

0x64

01100100

3

2

((x ^ y) & (y | z))

3

2

((x ^ y) & (y | z))

0x65

01100101

2

2

(x ^ (y |~ z))

3

3

(x ^ (y | ~z))

0x66

01100110

1

1

(x ^ y)

1

1

(x ^ y)

0x67

01100111

3

2

((x ^ y) |~ (x | z))

4

3

((x ^ y) | ~(x | z))

0x68

01101000

4

3

((x | y) & (z ^ (x & y)))

4

3

((x | y) & (z ^ (x & y)))

0x69

01101001

2

2

(z ^~ (x ^ y))

3

2

(~x ^ (y ^ z))

0x6A

01101010

2

2

(x ^ (y & z))

2

2

(x ^ (y & z))

0x6B

01101011

4

3

((x & (x ^ y)) |~ (z ^ (x ^ y)))

5

3

((x & (x ^ y)) | ((x ^ y) ^ ~z))

0x6C

01101100

2

2

(y ^ (x & z))

2

2

(y ^ (x & z))

0x6D

01101101

4

3

(z ^~ ((x ^ y) & (x | z)))

5

3

(~x ^ ((x | z) & (y ^ z)))

0x6E

01101110

3

2

((x ^ y) | (x &~ z))

4

3

((x ^ y) | (x ^ (x & z)))

0x6F

01101111

2

2

((x ^ y) |~ z)

3

2

((x ^ y) | ~z)

0x70

01110000

2

2

(z &~ (x & y))

3

3

(z ^ (z & (x & y)))

0x71

01110001

4

3

(z ^~ ((x ^ y) | (x ^ z)))

5

4

((x & y) ^ (z | (y ^ ~x)))

0x72

01110010

3

2

((x & y) ^ (x | z))

3

2

((x & y) ^ (x | z))

0x73

01110011

2

2

((z &~ x) |~ y)

4

3

(~y | (z & (x ^ y)))

0x74

01110100

3

2

((x & y) ^ (y | z))

3

2

((x & y) ^ (y | z))

0x75

01110101

2

2

((z &~ y) |~ x)

4

3

(~x | (z & (x ^ y)))

0x76

01110110

3

2

((x ^ y) | (z &~ x))

4

3

((x ^ y) | (z ^ (x & z)))

0x77

01110111

2

2

~(x & y)

2

2

~(x & y)

0x78

01111000

2

2

(z ^ (x & y))

2

2

(z ^ (x & y))

0x79

01111001

4

3

((x ^~ y) ^ (z & (x | y)))

5

3

(~x ^ ((x | y) & (y ^ z)))

0x7A

01111010

3

2

((x &~ y) | (x ^ z))

4

3

((x | z) ^ (z & (x & y)))

0x7B

01111011

2

2

((x ^ z) |~ y)

3

2

((x ^ z) | ~y)

0x7C

01111100

3

2

((y &~ x) | (y ^ z))

4

3

((y | z) ^ (z & (x & y)))

0x7D

01111101

2

2

((y ^ z) |~ x)

3

2

(~x | (y ^ z))

0x7E

01111110

3

2

((x ^ y) | (x ^ z))

3

2

((x ^ y) | (x ^ z))

0x7F

01111111

3

2

((x ^ z) |~ (x & y))

3

3

~(z & (x & y))

0x80

10000000

2

2

(z & (x & y))

2

2

(z & (x & y))

0x81

10000001

3

2

((x ^~ z) &~ (x ^ y))

4

3

((y ^ ~x) & (z ^ ~x))

0x82

10000010

2

2

(x &~ (y ^ z))

3

3

(x & (z ^ (x ^ y)))

0x83

10000011

3

2

((x |~ y) &~ (y ^ z))

4

3

((x | ~y) & (z ^ ~y))

0x84

10000100

2

2

(y &~ (x ^ z))

3

3

(y & (z ^ (x ^ y)))

0x85

10000101

3

2

((y |~ x) &~ (x ^ z))

4

3

((y | ~x) & (z ^ ~x))

0x86

10000110

4

3

((x | (x ^ y)) & (z ^ (x ^ y)))

4

3

((x | (x ^ y)) & (z ^ (x ^ y)))

0x87

10000111

2

2

(z ^~ (x & y))

3

2

((x & y) ^ ~z)

0x88

10001000

1

1

(x & y)

1

1

(x & y)

0x89

10001001

3

2

((x |~ z) &~ (x ^ y))

4

4

(~x ^ (y | (z & ~x)))

0x8A

10001010

2

2

(x & (y |~ z))

3

3

(x & (y | (x ^ z)))

0x8B

10001011

3

2

((x & y) |~ (y | z))

4

3

(~x ^ (y | (x ^ z)))

0x8C

10001100

2

2

(y & (x |~ z))

3

3

(y & (x | (y ^ z)))

0x8D

10001101

3

2

((x & y) |~ (x | z))

4

3

(z ^ (~x | (y ^ z)))

0x8E

10001110

4

3

(z ^ ((x ^ y) | (x ^ z)))

4

3

(z ^ ((x ^ y) | (x ^ z)))

0x8F

10001111

2

2

((x & y) |~ z)

3

2

((x & y) | ~z)

0x90

10010000

2

2

(z &~ (x ^ y))

3

3

(z ^ (z & (x ^ y)))

0x91

10010001

3

2

((z |~ x) &~ (x ^ y))

4

3

((y ^ ~x) & (z | ~x))

0x92

10010010

4

3

((x | z) & (z ^ (x ^ y)))

4

3

((x | z) & (z ^ (x ^ y)))

0x93

10010011

2

2

(y ^~ (x & z))

3

2

((x & z) ^ ~y)

0x94

10010100

4

3

((y | z) & (z ^ (x ^ y)))

4

4

((x ^ y) ^ (z | (x & (x ^ y))))

0x95

10010101

2

2

(x ^~ (y & z))

3

2

(~x ^ (y & z))

0x96

10010110

2

2

(z ^ (x ^ y))

2

2

(z ^ (x ^ y))

0x97

10010111

4

3

((z ^ (x ^ y)) |~ (x | z))

5

3

((z ^ (x ^ y)) | ~(x | z))

0x98

10011000

3

2

((x | z) &~ (x ^ y))

4

3

((x | z) ^ ((x ^ y) & (x | z)))

0x99

10011001

1

1

(x ^~ y)

2

2

(y ^ ~x)

0x9A

10011010

2

2

(x ^ (z &~ y))

3

2

((x ^ y) ^ (y | z))

0x9B

10011011

3

2

((x &~ z) |~ (x ^ y))

4

3

~((x ^ y) & (y | z))

0x9C

10011100

2

2

(y ^ (z &~ x))

3

2

((x ^ y) ^ (x | z))

0x9D

10011101

3

2

((y &~ z) |~ (x ^ y))

4

3

(~x ^ (y & (x | z)))

0x9E

10011110

4

3

((x & y) | (y ^ (x ^ z)))

4

3

((x & y) | (y ^ (x ^ z)))

0x9F

10011111

2

2

((x ^~ y) |~ z)

3

3

~(z & (x ^ y))

0xA0

10100000

1

1

(x & z)

1

1

(x & z)

0xA1

10100001

3

2

((x |~ y) &~ (x ^ z))

4

4

(~x ^ (z | (y & ~x)))

0xA2

10100010

2

2

(x & (z |~ y))

3

3

(x & (z | (x ^ y)))

0xA3

10100011

3

3

(x ^~ (z | (x ^ y)))

4

3

(~x ^ (z | (x ^ y)))

0xA4

10100100

3

2

((x | y) &~ (x ^ z))

4

3

((x ^ z) ^ (z | (x | y)))

0xA5

10100101

1

1

(x ^~ z)

2

2

(z ^ ~x)

0xA6

10100110

2

2

(x ^ (y &~ z))

3

2

((x ^ y) ^ (y & z))

0xA7

10100111

3

2

((x &~ y) |~ (x ^ z))

4

3

~((x ^ z) & (y | z))

0xA8

10101000

2

2

(x & (y | z))

2

2

(x & (y | z))

0xA9

10101001

2

2

(x ^~ (y | z))

3

2

(~x ^ (y | z))

0xAA

10101010

0

0

x

0

0

x

0xAB

10101011

2

2

(x |~ (y | z))

3

3

(x | ~(y | z))

0xAC

10101100

3

3

(y ^ (z & (x ^ y)))

3

3

(y ^ (z & (x ^ y)))

0xAD

10101101

3

2

((x & y) |~ (x ^ z))

4

3

((x & y) | (z ^ ~x))

0xAE

10101110

2

2

(x | (y &~ z))

3

3

(x | (y ^ (y & z)))

0xAF

10101111

1

1

(x |~ z)

2

2

(x | ~z)

0xB0

10110000

2

2

(z & (x |~ y))

3

3

(z & (x | (y ^ z)))

0xB1

10110001

3

2

((x | y) ^~ (x & z))

4

3

(y ^ (~x | (y ^ z)))

0xB2

10110010

4

3

(z ^ ((x ^ y) & (x ^ z)))

4

3

(z ^ ((x ^ y) & (x ^ z)))

0xB3

10110011

2

2

((x & z) |~ y)

3

2

((x & z) | ~y)

0xB4

10110100

2

2

(z ^ (y &~ x))

3

2

((x & y) ^ (y ^ z))

0xB5

10110101

3

2

((x ^~ z) |~ (x | y))

4

3

(~x ^ (z & (x | y)))

0xB6

10110110

4

3

((x & z) | (z ^ (x ^ y)))

4

3

((x & z) | (z ^ (x ^ y)))

0xB7

10110111

2

2

((x ^~ z) |~ y)

3

3

~(y & (x ^ z))

0xB8

10111000

3

2

((x & y) | (z &~ y))

3

3

(z ^ (y & (x ^ z)))

0xB9

10111001

3

2

((x & z) |~ (x ^ y))

4

3

((x & z) | (y ^ ~x))

0xBA

10111010

2

2

(x | (z &~ y))

3

3

(x | (z ^ (y & z)))

0xBB

10111011

1

1

(x |~ y)

2

2

(x | ~y)

0xBC

10111100

3

2

((x & y) | (y ^ z))

3

2

((x & y) | (y ^ z))

0xBD

10111101

3

2

((y ^ z) |~ (x ^ y))

4

3

((y ^ z) | (y ^ ~x))

0xBE

10111110

2

2

(x | (y ^ z))

2

2

(x | (y ^ z))

0xBF

10111111

2

2

(x |~ (y & z))

3

3

(x | ~(y & z))

0xC0

11000000

1

1

(y & z)

1

1

(y & z)

0xC1

11000001

3

2

((y |~ x) &~ (y ^ z))

4

4

(~y ^ (z | (x & ~y)))

0xC2

11000010

3

2

((x | y) &~ (y ^ z))

4

3

((y ^ z) ^ (z | (x | y)))

0xC3

11000011

1

1

(y ^~ z)

2

2

(z ^ ~y)

0xC4

11000100

2

2

(y & (z |~ x))

3

3

(y & (z | (x ^ y)))

0xC5

11000101

3

3

(y ^~ (z | (x ^ y)))

4

4

(~x ^ (z & (y ^ ~x)))

0xC6

11000110

2

2

(y ^ (x &~ z))

3

2

((x ^ y) ^ (x & z))

0xC7

11000111

3

2

((y &~ x) |~ (y ^ z))

4

3

~((x | z) & (y ^ z))

0xC8

11001000

2

2

(y & (x | z))

2

2

(y & (x | z))

0xC9

11001001

2

2

(y ^~ (x | z))

3

2

((x | z) ^ ~y)

0xCA

11001010

3

3

(x ^ (z & (x ^ y)))

3

3

(x ^ (z & (x ^ y)))

0xCB

11001011

3

2

((x & y) |~ (y ^ z))

4

3

(~y ^ (z | (x & y)))

0xCC

11001100

0

0

y

0

0

y

0xCD

11001101

2

2

(y |~ (x | z))

3

3

(y | ~(x | z))

0xCE

11001110

2

2

(y | (x &~ z))

3

3

(y | (x ^ (x & z)))

0xCF

11001111

1

1

(y |~ z)

2

2

(y | ~z)

0xD0

11010000

2

2

(z & (y |~ x))

3

3

(z & (y | (x ^ z)))

0xD1

11010001

3

2

((x | y) ^~ (y & z))

4

4

(~x ^ (y & (z ^ ~x)))

0xD2

11010010

2

2

(z ^ (x &~ y))

3

2

((x & y) ^ (x ^ z))

0xD3

11010011

3

2

((y ^~ z) |~ (x | y))

4

3

(~y ^ (z & (x | y)))

0xD4

11010100

4

3

(x ^ ((x ^ y) | (x ^ z)))

4

3

(x ^ ((x ^ y) | (x ^ z)))

0xD5

11010101

2

2

((y & z) |~ x)

3

2

(~x | (y & z))

0xD6

11010110

4

3

((y & z) | (z ^ (x ^ y)))

4

3

((y & z) | (z ^ (x ^ y)))

0xD7

11010111

2

2

((y ^~ z) |~ x)

3

3

~(x & (y ^ z))

0xD8

11011000

3

2

((x & y) | (z &~ x))

3

3

(z ^ (x & (y ^ z)))

0xD9

11011001

3

2

((y & z) |~ (x ^ y))

4

3

((y & z) | (y ^ ~x))

0xDA

11011010

3

2

((x & y) | (x ^ z))

3

2

((x & y) | (x ^ z))

0xDB

11011011

3

2

((x ^ z) |~ (x ^ y))

4

3

((x ^ z) | (y ^ ~x))

0xDC

11011100

2

2

(y | (z &~ x))

3

3

(y | (z ^ (x & z)))

0xDD

11011101

1

1

(y |~ x)

2

2

(y | ~x)

0xDE

11011110

2

2

(y | (x ^ z))

2

2

(y | (x ^ z))

0xDF

11011111

2

2

(y |~ (x & z))

3

3

(y | ~(x & z))

0xE0

11100000

2

2

(z & (x | y))

2

2

(z & (x | y))

0xE1

11100001

2

2

(z ^~ (x | y))

3

2

((x | y) ^ ~z)

0xE2

11100010

3

2

((x | y) ^ (y &~ z))

3

3

(x ^ (y & (x ^ z)))

0xE3

11100011

3

2

((x & z) |~ (y ^ z))

4

3

((x & z) | (z ^ ~y))

0xE4

11100100

3

2

((x | y) ^ (x &~ z))

3

3

(y ^ (x & (y ^ z)))

0xE5

11100101

3

2

((y & z) |~ (x ^ z))

4

3

((y & z) | (z ^ ~x))

0xE6

11100110

3

2

((x ^ y) | (x & z))

3

2

((x ^ y) | (x & z))

0xE7

11100111

3

2

((x ^ y) |~ (x ^ z))

4

3

((x ^ y) | (z ^ ~x))

0xE8

11101000

4

3

(x ^ ((x ^ y) & (x ^ z)))

4

3

(x ^ ((x ^ y) & (x ^ z)))

0xE9

11101001

4

3

((x & z) |~ (z ^ (x ^ y)))

5

3

((x & y) | (~x ^ (y ^ z)))

0xEA

11101010

2

2

(x | (y & z))

2

2

(x | (y & z))

0xEB

11101011

2

2

(x |~ (y ^ z))

3

3

(x | (z ^ ~y))

0xEC

11101100

2

2

(y | (x & z))

2

2

(y | (x & z))

0xED

11101101

2

2

(y |~ (x ^ z))

3

3

(y | (z ^ ~x))

0xEE

11101110

1

1

(x | y)

1

1

(x | y)

0xEF

11101111

2

2

((x | y) |~ z)

3

2

((x | y) | ~z)

0xF0

11110000

0

0

z

0

0

z

0xF1

11110001

2

2

(z |~ (x | y))

3

3

(z | ~(x | y))

0xF2

11110010

2

2

(z | (x &~ y))

3

3

(z | (x ^ (x & y)))

0xF3

11110011

1

1

(z |~ y)

2

2

(z | ~y)

0xF4

11110100

2

2

(z | (y &~ x))

3

3

(z | (y ^ (x & y)))

0xF5

11110101

1

1

(z |~ x)

2

2

(z | ~x)

0xF6

11110110

2

2

(z | (x ^ y))

2

2

(z | (x ^ y))

0xF7

11110111

2

2

(z |~ (x & y))

3

3

(z | ~(x & y))

0xF8

11111000

2

2

(z | (x & y))

2

2

(z | (x & y))

0xF9

11111001

2

2

(z |~ (x ^ y))

3

3

(z | (y ^ ~x))

0xFA

11111010

1

1

(x | z)

1

1

(x | z)

0xFB

11111011

2

2

(z | (x |~ y))

3

2

((x | z) | ~y)

0xFC

11111100

1

1

(y | z)

1

1

(y | z)

0xFD

11111101

2

2

(z | (y |~ x))

3

2

(~x | (y | z))

0xFE

11111110

2

2

(z | (x | y))

2

2

(z | (x | y))

0xFF

11111111

0

1

~0

0

1

~0