This repository has been archived by the owner on Mar 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 272
/
Copy pathrecip.c
298 lines (254 loc) · 8.5 KB
/
recip.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include <stdint.h>
#include <stdbool.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <fenv.h>
#include <float.h>
#if !defined(__STDC_IEC_559__) && !defined(__APPLE__)
# error Need IEEE 754 FP
#endif
typedef union {
float f;
uint32_t i;
} f32_union;
#define P 7 // precision of approximation
#define S 23 // significand bits in binary32
#define E 8 // exponent bits in binary32
#define B ((1UL<<(E-1))-1) // binary32 exponent bias
#define N (1UL<<P) // number of LUT entries
uint32_t rsqrt_lut[N];
uint32_t recip_lut[N];
#define rsqrt_lut_idx(sig, exp) (((sig) >> (S-P+1)) | ((exp & 1UL) << (P-1)))
#define recip_lut_idx(sig) ((sig) >> (S-P))
uint32_t estimate_rsqrt_sig(uint32_t idx)
{
const int ip = P, op = P;
// P-bit index corresponds to {exp[0], sig[S-1:S-(P-1)]}
uint32_t exp = (idx >> (ip-1)) ? B-2 : B-1; // 1 bit from exp -> [0.25, 1.0)
uint32_t sig = (idx & ((1UL<<(ip-1))-1)) << (S-(ip-1)); // P-1 bits from sig
// sqrt(leftmost point on interval)
// (If P is increased substantially, need to increase precision beyond double.)
f32_union in = {.i = (exp << S) | sig};
double left = sqrt(in.f);
// sqrt(rightmost point on interval)
f32_union in1 = {.i = in.i + (1UL<<(S-ip+1))};
double right = sqrt(nextafter((double)(in1.f), 0.0));
// Naively search the space of 2^P output values for the one that minimizes
// the maximum error on the interval. Since the function is monotonic,
// evaluating the error on the extremes of the interval suffices.
// (This could obviously be done more efficiently, but 2^P is small.)
double best_error = INFINITY;
f32_union best = {.f = 0.0f};
f32_union base = {.i = B << S}; // [1.0, 2.0)
for (f32_union cand = base; cand.i < base.i + (1UL<<S); cand.i += 1UL<<(S-op)) {
double error = fmax(fabs(1.0 - ((double)(cand.f)) * left),
fabs(1.0 - ((double)(cand.f)) * right));
if (error < best_error) {
best_error = error;
best = cand;
}
}
// Return P MSBs of mantissa
return (best.i >> (S-op)) & ((1UL<<op)-1);
}
uint32_t estimate_recip_sig(uint32_t idx)
{
const int ip = P, op = P;
// P-bit index corresponds to sig[S-1:S-P]
uint32_t sig = idx << (S-ip);
uint32_t exp = B-1; // [0.5, 1.0)
// Leftmost point on interval
f32_union in = {.i = (exp << S) | sig};
double left = in.f;
// Rightmost point on interval
f32_union in1 = {.i = in.i + (1UL<<(S-ip))};
double right = nextafter((double)(in1.f), 0.0);
// Naively search the space of 2^P output values for the one that minimizes
// the maximum error on the interval. Since the function is monotonic,
// evaluating the error on the extremes of the interval suffices.
// (This could obviously be done more efficiently, but 2^P is small.)
double best_error = INFINITY;
f32_union best = {.f = 0.0f};
f32_union base = {.i = B << S}; // [1.0, 2.0)
for (f32_union cand = base; cand.i < base.i + (1UL<<S); cand.i += 1UL<<(S-op)) {
double error = fmax(fabs(1.0 - (double)(cand.f) * left),
fabs(1.0 - (double)(cand.f) * right));
if (error < best_error) {
best_error = error;
best = cand;
}
}
// Return P MSBs of mantissa
return (best.i >> (S-op)) & ((1UL<<op)-1);
}
float rsqrt(float a)
{
f32_union in = {.f = a};
bool sign = in.i >> (S+E);
uint32_t exp = (in.i >> S) & ((1UL<<E)-1);
uint32_t sig = in.i & ((1UL<<S)-1);
if (exp == 0 && sig == 0) {
// zero => inf of same sign; raise divide-by-zero
feraiseexcept(FE_DIVBYZERO);
return copysignf(INFINITY, a);
} else if (exp == ((1UL<<E)-1) && sig != 0) {
// NaN => canonical NaN
if (!(sig >> (S-1))) // raise invalid on sNaN
feraiseexcept(FE_INVALID);
return NAN;
} else if (sign) {
// nonzero negative => NaN; raise invalid
feraiseexcept(FE_INVALID);
return NAN;
} else if (exp == ((1UL<<E)-1)) {
// +inf => +zero
return copysignf(0, a);
} else if (exp == 0) {
// normalize the subnormal
while ((sig & (1UL<<(S-1))) == 0)
exp--, sig <<= 1;
sig = (sig << 1) & ((1UL<<S)-1);
}
uint32_t out_sig = rsqrt_lut[rsqrt_lut_idx(sig, exp)] << (S-P);
uint32_t out_exp = (3 * B + ~exp) / 2;
f32_union res = {.i = (out_exp << S) | out_sig};
return res.f;
}
float recip(float a)
{
f32_union in = {.f = a};
bool sign = in.i >> (S+E);
uint32_t exp = (in.i >> S) & ((1UL<<E)-1);
uint32_t sig = in.i & ((1UL<<S)-1);
if (exp == ((1UL<<E)-1) && sig == 0) {
// inf => zero of same sign
return copysignf(0, a);
} else if (exp == ((1UL<<E)-1)) {
// NaN => canonical NaN
if (!(sig >> (S-1))) // raise invalid on sNaN
feraiseexcept(FE_INVALID);
return NAN;
} else if (exp == 0 && sig == 0) {
// zero => inf of same sign; raise divide-by-zero
feraiseexcept(FE_DIVBYZERO);
return copysignf(INFINITY, a);
} else if (exp == 0) {
// normalize the subnormal
while ((sig & (1UL<<(S-1))) == 0)
exp--, sig <<= 1;
sig = (sig << 1) & ((1UL<<S)-1);
if (exp != 0 && exp != (uint32_t)-1) {
// overflow to inf or max value of same sign, depending on sign and
// rounding mode
feraiseexcept(FE_INEXACT | FE_OVERFLOW);
if (fegetround() == FE_TOWARDZERO ||
(fegetround() == FE_DOWNWARD && !sign) ||
(fegetround() == FE_UPWARD && sign))
return copysignf(FLT_MAX, a);
else
return copysignf(INFINITY, a);
}
}
uint32_t out_exp = 2 * B + ~exp;
uint32_t out_sig = recip_lut[recip_lut_idx(sig)] << (S-P);
if (out_exp == 0 || out_exp == (uint32_t)-1) {
// the result is subnormal, but don't raise the underflow exception,
// because there's no additional loss of precision.
out_sig = (out_sig >> 1) | (1UL << (S-1));
if (out_exp == (uint32_t)-1) {
out_sig >>= 1;
out_exp = 0;
}
}
f32_union res = {.i = ((uint32_t)sign << (E+S)) | (out_exp << S) | out_sig};
return res.f;
}
void populate_luts()
{
for (size_t i = 0; i < N; i++) {
rsqrt_lut[i] = estimate_rsqrt_sig(i);
recip_lut[i] = estimate_recip_sig(i);
}
}
void verilog()
{
printf("module RSqrt%dLUT (input [%d:0] in, output reg [%d:0] out);\n", P, P-1, P-1);
printf(" // in[%d] corresponds to exp[0]\n", P-1);
printf(" // in[%d:0] corresponds to sig[S-1:S-%d]\n", P-2, P-2);
printf(" // out[%d:0] corresponds to sig[S-1:S-%d]\n", P-1, P-1);
printf(" always @(*)\n");
printf(" case (in)\n");
for (size_t i = 0; i < N; i++)
printf(" %zu: out = %" PRIu32 ";\n", i, rsqrt_lut[i]);
printf(" endcase\n");
printf("endmodule\n");
printf("module Recip%dLUT (input [%d:0] in, output reg [%d:0] out);\n", P, P-1, P-1);
printf(" // in[%d:0] and out[%d:0] correspond to sig[S-1:S-%d]\n", P-1, P-1, P-1);
printf(" always @(*)\n");
printf(" case (in)\n");
for (size_t i = 0; i < N; i++)
printf(" %zu: out = %" PRIu32 ";\n", i, recip_lut[i]);
printf(" endcase\n");
printf("endmodule\n");
}
void test()
{
double max_error = 0;
for (uint32_t i = 0x3F000000; i <= 0x3F800000; i++) {
f32_union r = {.i = i};
double error = 1.0 - recip(r.f) * r.f;
max_error = fmax(fabs(error), max_error);
}
printf("max recip error on [0.5, 1]: 2^%g\n", log2(max_error));
max_error = 0;
for (uint32_t i = 0x3E800000; i <= 0x3F800000; i++) {
f32_union r = {.i = i};
double error = 1.0 - rsqrt(r.f) * sqrt(r.f);
max_error = fmax(fabs(error), max_error);
}
printf("max rsqrt error on [0.25, 1]: 2^%g\n", log2(max_error));
}
void test_slow()
{
double max_error = 0;
for (uint32_t i = 0x0; i <= 0x7f7fffff; i++) {
f32_union r = {.i = i};
float rcp = recip(r.f);
double error = 1.0 - rcp * r.f;
if (!isfinite(rcp)) {
assert(!isfinite(1.0f / r.f));
} else {
max_error = fmax(fabs(error), max_error);
}
}
printf("max recip error: 2^%g\n", log2(max_error));
max_error = 0;
for (uint32_t i = 0; i <= 0x7f7fffff; i++) {
f32_union r = {.i = i};
double error = 1.0 - rsqrt(r.f) * sqrt(r.f);
max_error = fmax(fabs(error), max_error);
}
printf("max rsqrt error: 2^%g\n", log2(max_error));
}
int main(int argc, char** argv)
{
populate_luts();
if (argc == 2 && strcmp(argv[1], "--verilog") == 0) {
verilog();
return 0;
}
if (argc == 2 && strcmp(argv[1], "--test") == 0) {
test();
return 0;
}
if (argc == 2 && strcmp(argv[1], "--test-long") == 0) {
test_slow();
return 0;
}
printf("Invoke me with --verilog, --test, or --test-long\n");
return 1;
}