-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathrandomexplorationofportfolioallocation.py
112 lines (80 loc) · 4.75 KB
/
randomexplorationofportfolioallocation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Explore portfolio optimisation
"""
import random
import matplotlib.pyplot as plt
from commonrandom import threeassetportfolio
from optimisation import opt_shrinkage, bootstrap_portfolio, handcrafted
import numpy as np
from common import DAYS_IN_YEAR, ROOT_DAYS_IN_YEAR
import pandas as pd
## Generate random data with various characteristics
## each tuple is sharpes, then correlations
portfolio=([ .5, .5, .5],[0.8, 0.0, 0.0])
years_to_test=[1, 5, 10, 20]
monte_length=200
test_period_years=1
## arbitrary
methods=["HC", "BS", "S00", "S03", "S30","S33","S06" ,"S60","S36","S63", "S66","S01", "S10", "S31", "S61","S13", "S16", "S11"]
## used for plot order
methods_ms=[ "S00", "S03", "S06", "S01", "S30", "S33", "S36", "S31", "S60", "S63", "S66", "S61", "S10", "S13", "S16", "S11", "HC", "BS"]
methods_by_cs=[ "S00", "S30", "S60", "S10", "S03", "S33", "S63", "S13", "S06", "S36" ,"S66", "S16", "S01", "S31", "S61", "S11", "HC", "BS"]
benchmarket="S00"
sfactor_lookup=dict([("1",1.0), ("0", 0.0), ("3", 0.333), ("6", 0.66) ])
## For the shorter periods we just use earlier examples of data we've already tested
max_length_years=np.max(years_to_test)+1
plength=max_length_years*DAYS_IN_YEAR+100
test_period_days=test_period_years*DAYS_IN_YEAR
SRlist, clist=portfolio
all_returns=[threeassetportfolio(plength=plength, SRlist=SRlist, clist=clist) for notused in range(monte_length)]
for data_length in years_to_test:
print "Testing data length %d" % data_length
in_sample_start=0
in_sample_end=data_length*DAYS_IN_YEAR
out_sample_start=in_sample_end+1
out_sample_end=out_sample_start+test_period_days
answers_this_port_SR=[np.nan]
answers_this_port_degrade=[np.nan]
returns_to_use_insample=[one_return_series.iloc[in_sample_start:in_sample_end] for one_return_series in all_returns]
returns_to_use_outsample=[one_return_series.iloc[out_sample_start:out_sample_end] for one_return_series in all_returns]
len_returns_to_use_os=[one_returns.shape[0] for one_returns in returns_to_use_outsample]
len_returns_to_use_is=[one_returns.shape[0] for one_returns in returns_to_use_insample]
"""
Run each method over
"""
for method_name in methods:
if method_name=="HC":
wts=[handcrafted(one_returns) for one_returns in returns_to_use_insample]
elif method_name=="BS":
wts=[bootstrap_portfolio(one_returns, monte_carlo=50, monte_length=int(data_length*DAYS_IN_YEAR*.1), equalisemeans=False, equalisevols=False)
for one_returns in returns_to_use_insample]
elif method_name[0]=="S":
## shrinkage
shrinkage_factors=(sfactor_lookup[method_name[1]], sfactor_lookup[method_name[2]])
wts=[opt_shrinkage(one_returns, shrinkage_factors, equalisevols=False) for one_returns in returns_to_use_insample]
else:
raise Exception("Not recognised")
## See how these weights did in and out of sample
wts_mat_os=[np.array([list(weights)]*length_needed, ndmin=2) for (weights, length_needed) in zip( wts, len_returns_to_use_os)]
wts_mat_is=[np.array([list(weights)]*length_needed, ndmin=2) for (weights, length_needed) in zip( wts, len_returns_to_use_is)]
perf_os=[weight_mat*returns.values for (weight_mat, returns) in zip(wts_mat_os, returns_to_use_outsample)]
perf_is=[weight_mat*returns.values for (weight_mat, returns) in zip(wts_mat_is, returns_to_use_insample)]
perf_os=[perf.sum(axis=1) for perf in perf_os]
perf_is=[perf.sum(axis=1) for perf in perf_is]
ann_return_os=[ROOT_DAYS_IN_YEAR*perf.mean() for perf in perf_os]
sharpe_ann_return_os=np.mean(ann_return_os)/np.std(ann_return_os)
sharpe_os=[ROOT_DAYS_IN_YEAR*perf.mean()/perf.std() for perf in perf_os]
sharpe_is=[ROOT_DAYS_IN_YEAR*perf.mean()/perf.std() for perf in perf_is]
degradation=[s_os - s_is for (s_os, s_is) in zip(sharpe_os, sharpe_is)]
avg_degradation=np.mean(degradation)
## Stack up the results
answers_this_port_SR.append(sharpe_ann_return_os)
answers_this_port_degrade.append(avg_degradation)
results=pd.DataFrame(np.array([answers_this_port_SR, answers_this_port_degrade]).transpose(), columns=["SR", "Degradation"], index=[""]+methods)
for (methods_idx, mtitle) in zip([methods_ms, methods_by_cs], ["mean shrinkage", "corr shrinkage"]):
results=results.loc[[""]+methods_idx]
ax=results.plot(use_index=False)
plt.xticks(range(len(methods_idx)+1))
plt.title("SR out of sample; Degradation out vs in sample; fit over %d years, order %s" % (data_length, mtitle))
ax.set_xticklabels([""]+methods_idx)
plt.show()