-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathneurons.py
526 lines (486 loc) · 19.3 KB
/
neurons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import numpy as np
from itertools import zip_longest
from tabulate import tabulate
from records import Rec
from utils import gensym
#######################
# Classes
#######################
class Neuron(object):
def __init__(self,name=None,n=1):
if name is None:
self.name = gensym('neuron')
else:
self.name = name
self.network = False
self.synapses = []
self.state = Rec({'dendrites' : np.array([0]*n),
'body' : {'w' : np.array([1]*n),
'theta' : 1,
'f' : AndFun},
'axon' : 0
})
def update(self,force=None):
val = self.state.body.f(self.state.dendrites,
self.state.body.w,
self.state.body.theta)
if force:
self.state.axon = val
for s in self.synapses:
s.update()
else:
if not val == self.state.axon:
self.state.axon = val
for s in self.synapses:
s.update()
def mark_update(self):
if self.network:
self.network.to_update.append(self)
def excite(self,time='tick',array=None):
if array is None:
array = np.array([1])
if len(array) == len(self.state.dendrites):
self.state.dendrites = array
self.update()
netw = self.network
if time == 'tick' and isinstance(netw,Network) and netw.ntracing():
netw.ntrace()
def inhibit(self,time='tick'):
self.excite(time,np.array([0]*len(self.state.dendrites)))
def fire(self,time='tick'):
self.excite(time,np.array([self.state.body.theta]*len(self.state.dendrites)))
def inactive(self):
if self.state.axon == 0:
return True
else:
return False
# The assumption is that exciting all dendrites with the threshold theta will
# cause the neuron to fire (i.e. state.axon is set to 1). If not all neurons
# work like this then we need to redefine this. Possibly by storing a firing
# condition on the neuron. Similary with inhibit we are assuming that setting
# the state of all dendrites to 0 will cause the neuron not to fire
# (i.e. state.axon is set to 0).
def spike(self,time='tick'):
self.fire(time)
self.inhibit()
class AndNeuron(Neuron):
def __init__(self,n=2):
self.synapses = []
self.state = Rec({'dendrites' : np.array([0]*n),
'body' : {'w' : np.array([1]*n),
'theta' : 1,
'f' : AndFun},
'axon' : 0
})
class OrNeuron(Neuron):
def __init__(self,n=2):
self.synapses = []
self.state = Rec({'dendrites' : np.array([0]*n),
'body' : {'w' : np.array([1]*n),
'theta' : 1,
'f' : OrFun},
'axon' : 0
})
class SwitchNeuron(Neuron):
def __init__(self,name=None,n=2):
if name is None:
self.name = gensym('switchneuron')
else:
self.name = name
self.network = False
self.synapses = []
self.state = Rec({'dendrites' : np.array([0]*n),
'body' : {'w' : np.array([1]*n),
'theta' : 1,
'f' : SwitchFun},
'axon' : 0
})
def fire(self,time='tick'):
self.excite(time,np.array([self.state.body.theta,self.state.body.theta-.1]))
class DelayNeuron(Neuron):
def __init__(self,delay=1,name='Delay',n=1):
Neuron.__init__(self,name,n)
self.delay = delay
self.remaining_delay = delay
def update(self,force=None):
if self.remaining_delay and self.inactive():
self.remaining_delay = self.remaining_delay-1
self.mark_update()
else:
Neuron.update(self,force)
self.remaining_delay = self.delay
# class HybridDelayNeuron(DelayNeuron):
# def __init__(self,delay=1,name='Delay',n=1):
# Neuron.__init__(self,name,n)
# self.delay = delay
# self.remaining_delay = delay
# self.memory = None
# def update(self):
# val = self.state.body.f(self.state.dendrites,
# self.state.body.w,
# self.state.body.theta)
# if not self.memory:
# self.memory = val
# if self.remaining_delay:
# self.remaining_delay = self.remaining_delay-1
# self.mark_update()
# else:
# self.state.axon = self.memory
# self.memory = self.state.body.f(self.state.dendrites,
# self.state.body.w,
# self.state.body.theta)
# self.remaining_delay = self.delay
# for s in self.synapses:
# s.update()
class Synapse(object):
def __init__(self,n1,n2,dend_num=0):
self.from_neuron = n1
self.to_neuron = Rec({'neuron' : n2,
'dend_num' : dend_num})
self.state = Rec({'axon_mem' : [self.from_neuron.state.axon],
'w' : 1,
'f' : OneFun})
self.from_neuron.synapses.append(self)
def update(self):
self.state.axon_mem.append(self.from_neuron.state.axon)
val = self.state.f(self.state.axon_mem, self.state.w)
if not val == 0:
self.to_neuron.neuron.state.dendrites[self.to_neuron.dend_num] = val
self.state.axon_mem = []
self.to_neuron.neuron.mark_update()
class InhibitorySynapse(Synapse):
def __init__(self,n1,n2,dend_num=0):
Synapse.__init__(self,n1,n2,dend_num=0)
self.state.w = -1
# class HybridSynapse(Synapse):
# def update(self):
# self.state.axon_mem.append(self.from_neuron.state.axon)
# val = self.state.f(self.state.axon_mem, self.state.w)
# if not self.to_neuron.neuron.state.dendrites[self.to_neuron.dend_num] == val:
# self.to_neuron.neuron.state.dendrites[self.to_neuron.dend_num] = val
# self.state.axon_mem = []
# self.to_neuron.neuron.mark_update()
class Network(object):
def __init__(self,neurons=np.array([])):
self.name = gensym('network')
self.neurons = neurons
self.history = False
self.to_update = []
def add_neuron(self,name=None,den=1):
neur = Neuron(name,n=den)
neur.network = self
self.neurons = np.concatenate((self.neurons,
np.array([neur])))
if not self.history is False:
self.history = np.array([list(r)+[2] for r in self.history])
return neur
def add_switch_neuron(self,name=None):
neur = SwitchNeuron(name)
neur.network = self
self.neurons = np.concatenate((self.neurons,
np.array([neur])))
if not self.history is False:
self.history = np.array([list(r)+[2] for r in self.history])
return neur
def add_delay_neuron(self,delay=1,name='Delay'):
n = DelayNeuron(delay,name)
n.network = self
self.neurons = np.concatenate((self.neurons,
np.array([n])))
if not self.history is False:
self.history = np.array([[list(r)+[2]] for r in self.history])
return n
def add_hybrid_delay_neuron(self,delay=1,name='Delay'):
n = HybridDelayNeuron(delay,name)
n.network = self
self.neurons = np.concatenate((self.neurons,
np.array([n])))
if not self.history is False:
self.history = np.array([[list(r)+[2]] for r in self.history])
return n
def run(self,force=None):
update_list = self.to_update
self.to_update = []
if update_list:
for i in update_list:
i.update(force)
if self.ntracing():
self.ntrace()
self.run(force)
def excite(self,neurons=None,arrays=None):
if neurons is None:
neurons = range(len(self.neurons))
if arrays is None:
arrays = [np.array([1])]*len(neurons)
for i,ar in zip(neurons,arrays):
self.neurons[i].excite('notick',ar)
if self.ntracing():
self.ntrace()
def inhibit(self,time='tick',neurons=None):
if neurons is None:
neurons = range(len(self.neurons))
for i in neurons:
n = self.neurons[i]
n.excite('notick',np.array([0]*len(n.state.dendrites)))
if self.ntracing() and time is 'tick':
self.ntrace()
def fire(self,neurons=None):
if neurons is None:
neurons = range(len(self.neurons))
for i in neurons:
self.neurons[i].fire('notick')
if self.ntracing():
self.ntrace()
def realize_apat(self,apat):
if not apat.empty():
for i,j in zip(apat.neurons,apat.vals):
for n,v in zip(i,j):
if v == 1:
self.neurons[n].fire('notick')
elif v == 0:
self.neurons[n].inhibit('notick')
else:
print('Non-binary value in history pattern')
None
if self.ntracing():
self.ntrace()
def inhibit_apat(self,apat):
self.realize_apat(ActivityPattern(apat.neurons,apat.vals*0))
def memorize_apat(self,apat,name=gensym('mem')):
mem_neuron = self.add_neuron(name)
delay_neurons = []
for i in range(len(apat.neurons)):
#if i>0:
delay_neurons.append(self.add_delay_neuron(i))
#mem_neuron = delay_neurons[0]
#mem_neuron.name = name
#mem_neuron.delay = 1
for n in delay_neurons:
Synapse(mem_neuron,n)
for i,j,k in zip(apat.neurons,apat.vals,delay_neurons): #[mem_neuron]+
for n,v in zip(i,j):
if v == 1:
Synapse(k,self.neurons[n])
elif v == 0:
InhibitorySynapse(k,self.neurons[n])
InhibitorySynapse(delay_neurons[-1],mem_neuron)
# for n in delay_neurons[1:]:
# n.delay = n.delay-1
for n in delay_neurons:
InhibitorySynapse(delay_neurons[-1],n)
return mem_neuron
def memorize_type(self,Tn,name=gensym('mem')):
return self.memorize_apat(Tn.getapat(self).compact(),name)
def memorize_judgmnt(self,Tn,an,name=gensym('judgemem')):
return self.memorize_apat(Tn.judgmnt_type_n(an).getapat(self).compact(),
name)
def match_apat(self,apat,h=None):
if h is None:
h = self.history
if isinstance(h,bool):
print('Tracing not turned on for '+self.name)
return None
elif len(apat.neurons) == 0:
return True
elif len(apat.neurons)>len(h):
return False
elif all(h[0][apat.neurons[0]] == apat.vals[0]):
return self.match_apat(ActivityPattern(list(apat.neurons[1:]),list(apat.vals[1:])),h[1:])
else:
return self.match_apat(apat,h[1:])
def dump(self):
return np.array([n.state.axon for n in self.neurons])
def ntrace(self):
if isinstance(self.history,bool):
self.history = np.array([self.dump()])
else:
new = self.dump()
if not all(self.history[-1] == new):
self.history = np.row_stack((self.history,new))
def nontrace(self):
self.history = False
def ntracing(self):
return isinstance(self.history,np.ndarray)
def display_history(self):
l = np.row_stack((np.array([n.name for n in self.neurons]),
self.history)).transpose()
l[l=='2'] = '*'
print(tabulate(l))
# print(
# tabulate(
# np.row_stack((np.array([n.name for n in self.neurons]),
# self.history))
# .transpose()
# )
# )
class ActivityPattern(object):
"""First (indices) argument is a list of lists of array positions to be affected. Or '[]' for the empty activity pattern (no effect on the network).
Second (vals) argument is a list of lists showing the values (0
or 1) to be assigned to the axons of the neurons in the array
positions of the indices argument. Default is 1 for each neuron
mentioned in indices at each tick."""
def __init__(self,indices,vals=None):
self.neurons = np.array([np.array(i) for i in indices])
if vals is None:
self.vals = np.array([np.array([1]*len(self.neurons[i]))
for i in range(len(self.neurons))])
else:
self.vals = np.array([np.array(i) for i in vals])
def empty(self):
return list(self.neurons)==[]
def compact(self):
new_neurons = []
new_vals = []
def compact_line(ns,vs):
for i in ns:
count = ns.count(i)
if count>1:
for j in range(count-1):
index = ns.index(i)
ns.pop(index)
vs.pop(index)
return (ns,vs)
for i,j in zip(self.neurons,self.vals):
new_line = compact_line(list(i),list(j))
if new_neurons is []:
new_neurons = [new_line[0]]
new_vals = [new_line[1]]
else:
to_delete = []
for k in new_line[0]:
if [l for l in new_neurons if k in l]:
line_index = max(index for index,neurons in enumerate(new_neurons) if k in neurons)
k_index = new_line[0].index(k)
if new_line[1][k_index] == new_vals[line_index][new_neurons[line_index].index(k)]:
to_delete.append(k_index)
new_line = (list(np.delete(new_line[0],to_delete)),list(np.delete(new_line[1],to_delete)))
if new_line[0]:
new_neurons.append(new_line[0])
new_vals.append(new_line[1])
return ActivityPattern(new_neurons,new_vals)
def merge(self,apat):
earr = np.array([],'int64')
new_neurons = [np.concatenate((i,j))
for i,j in zip_longest(self.neurons,apat.neurons,fillvalue=earr)]
new_vals = [np.concatenate((i,j))
for i,j in zip_longest(self.vals,apat.vals,fillvalue=earr)]
return ActivityPattern(new_neurons,new_vals)
def concat(self,apat):
new_neurons = list(self.neurons)+list(apat.neurons)
new_vals = list(self.vals)+list(apat.vals)
return ActivityPattern(new_neurons,new_vals)
def subapat_of(self,apat):
if len(self.neurons) > len(apat.neurons):
return False
elif len(self.neurons) is 0:
return True
elif all(i in [x for x in zip(apat.neurons[0],apat.vals[0])]
for i in [x for x in zip(self.neurons[0],self.vals[0])]):
return ActivityPattern(self.neurons[1:],
self.vals[1:]).subapat_of(
ActivityPattern(apat.neurons[1:],
apat.vals[1:]))
else:
return self.subapat_of(ActivityPattern(apat.neurons[1:],apat.vals[1:]))
def show(self,network):
l = [zip(i,j) for i,j in zip(self.neurons,self.vals)]
return [[(x,network.neurons[x].name,y) for x,y in l[i]] for i in range(len(l))]
def merge_apat_list(l):
if l == []:
return ActivityPattern([])
else:
res = l[0]
for i in l[1:]:
res = res.merge(i)
return res
#return l[0].merge(merge_apat_list([l[1:]]))
class GensymNeuronTable(object):
def __init__(self):
self.table = {}
def add_gensym_store(self,label):
self.table[label] = {}
def add_gensym_neuron(self,label,network):
network.add_neuron(label)
if label not in self.table:
self.add_gensym_store(label)
if network.name in self.table[label]:
self.table[label][network.name].append(len(network.neurons)-1)
else:
self.table[label][network.name] = [len(network.neurons)-1]
def index(self,label,network,assgn):
# res = next(x for x in iter(self.table[label][network.name])
# if x not in assgn['in_use'])
# assgn['in_use'].append(res)
# return res
if label in self.table and network.name in self.table[label]:
l = [x for x in self.table[label][network.name]
if x not in assgn['in_use']]
#print(l)
#print(network.dump())
if l:
res = next(iter(l))
assgn['in_use'].append(res)
#print(assgn['in_use'])
return res
else:
self.add_gensym_neuron(label,network)
return self.index(label,network,assgn)
else:
self.add_gensym_neuron(label,network)
return self.index(label,network,assgn)
def add_function_level(self,network):
self.add_gensym_neuron('lambda',network)
self.add_gensym_neuron('dom',network)
self.add_gensym_neuron('var',network)
self.add_gensym_neuron('rng',network)
def add_function_levels(self,network,n):
for i in range(n):
self.add_function_level(network)
def num_function_levels(self,network):
return len(self.table['lambda'][network.name])
def add_ptype_level(self,num_args,network):
self.add_gensym_neuron('ptype'+str(num_args),network)
self.add_gensym_neuron('rel',network)
for i in range(num_args):
self.add_gensym_neuron('arg'+str(i),network)
def add_ptype_levels(self,num_args,network,n):
for i in range(n):
self.add_ptype_level(num_args,network)
def num_ptype_levels(self,num_args,network):
return len(self.table['ptype'+str(num_args)][network.name])
def add_record_level(self,network):
self.add_gensym_neuron('rec',network)
#self.add_gensym_neuron('rectype',network)
def add_record_levels(self,network,n):
for i in range(n):
self.add_record_level(network)
#######################
# Functions
#######################
# Functions for neuron bodies
def AndFun(dendrites,w,theta):
if all(dendrites * w >= theta):
return 1
else:
return 0
def OrFun(dendrites,w,theta):
if any(dendrites * w >= theta):
return 1
else:
return 0
def SwitchFun(dendrites,w,theta):
if dendrites[0] * w[0] >= theta and dendrites[1]*w[1] < theta:
return 1
else:
return 0
# Functions for synapses
def OneFun(l,w):
if 1 in l:
return w
else:
return 0
# def HybridOneFun(l,w):
# if l[0] is 1:
# return w
# else:
# return 0