-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscrap.tex
1289 lines (1206 loc) · 68.6 KB
/
scrap.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
We will argue below that it is very important that the complex types
we introduce are structured which enables them to be compared and
modified. This is what makes it possible to account for how agents
exploit and adapt the resources they have as they create new language
during the course of interaction. It is not quite enough, however, simply
to have objects with components. We also need a systematic way of
accessing these components, a system of labelling which will provide
us with handles for the various pieces. This is where the record
types of TTR come in. There is a large literature on type theories
with records in computer science, for example,
\cite{Tasistro1997,Betarte1998,BetarteTasistro1998,CoquandPollackTakeyama2004}.
Our notion of record type is closely related to those discussed in
this literature, though (like the rest of TTR) couched in rather
different terms. For us a record type is a set of fields where each
field is an ordered pair of a label and a type (or a pair consisting
of a dependent type and a sequence of path names corresponding to what
the type is to depend on). A record belonging to such a type is a set
of fields which includes fields with the same labels as those occurring
in the type. Each field in the record with a label matching one in
the type must contain an object belonging to the type of the
corresponding field in the type. This is made precise in
Section~\ref{sec-records}.
It is an important aspect of human cognition that we not only appear
to construct complex cognitive objects out of smaller ones as their
components but that we also have ways of accessing the components and
performing operations like substitutions, deletions and additions.
Cognitive processing also appears to depend on similarity metrics
which require us to compare components. Thus labelling or the
provision of handles pointing to the components of complex objects is
an important part of a formal theory of human cognition and in TTR it
is the records and record types which do this work for us.
The importance of labelling has been reflected in the use of features
in linguistic theorizing ranging from the early Prague school
\cite{Trubetzkoy1939} to modern feature based grammar
\cite{Sag:Wasow:ea:03}. It appears in somewhat different form in the
use of discourse referents in the treatment of discourse anaphora in
formal semantics \cite{KampReyle1993}. In \cite{Cooper2005a} we argue
that record types can be used both to model the feature structures of
feature based grammar and the discourse representation structures of
discourse representation theory. This is part of a general programme
for developing TTR to be a general type theory which underlies all our
linguistic cognitive processing and the way in which we state the
lexicon and grammar
rules in Section~\ref{sec:sentsem} reflects this. In fact, what we
would like to see in the future is a single type theory which
underlies all of human cognitive processing and we would suggest that
a step towards this is
the discussion here concerning how accounts of modality and intensionality are
built up on the basis of typing judgements linked to perception.
Working out the formal details of this proposal involves us in
considerable complexity, as will become apparent below. In contrast
to the statement of TTR in \cite{Cooper2005} we attempt here to
present interacting modules which are not that complex in themselves.
Nevertheless, knowing exactly what you have got when you put
everything together is not an entirely trivial matter. It would be
nice from a logical point of view if human cognition presented itself
to us in neat separate boxes which we could study independently. But
this is not the case. We
are after all involved in the study of a biological system and there
is no reason in principle why our cognitive anatomy should be any
simpler than our physical anatomy with its multiplicity of objects
such as organs, nerves, muscles and arteries and complex dependencies
between them, though all built up on the basis of general principles
of cell structure and DNA. Compared with what we know about physical
anatomy, TTR seems quite modest in the number of different kinds of
objects it proposes and the interrelationships between them. It is
probably going to get more complicated as the research progresses in
the future\ldots
We can paraphrase this as ``the property of being a dog which chases a
cat and there is something which it catches''. In order to obtain the
anaphora we need to align the following two paths in the domain type
of this function: `$\mathfrak{c}.\mathfrak{s}.\text{x}_0$' and
`e$_2$.x'. This we do in \nexteg{} by creating a manifest field on
the former path.
\begin{ex}
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$\Uparrow^2$e$_2$.x}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
}}\\
\smalltfield{e$_1$}{dog(x)}\\
\smalltfield{e$_2$}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
\smalltfield{e}{chase$^\dagger$($r$.x, x)}}}}
.
\record{
\tfield{e}{catch$^{\dagger}$($r$.x, $r.\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}}$\urcorner$
\end{ex}
We can paraphrase this as ``the property of being a dog which chases a
cat and catches that cat''.
In order to include such properties with aligned paths as the scope of
quantifiers in our interpretations, we will first generalize the
characterization of alignment of paths given on
p.~\pageref{pg:path-alignment-types}f to functions in \nexteg{}.
\begin{ex}
If $\varphi=\ulcorner\lambda r\!:\!T\ .\ \psi\urcorner$ and
$\pi_1,\pi_2\in\mathrm{paths}(T)$, then
\begin{quote}
$\varphi_{\pi_1=\pi_2}=\ulcorner\lambda r\!:\!T_{\pi_1=\pi_2}\ .\
\psi\urcorner$
\end{quote}
\end{ex}
We then add two further clauses to the characterization of witnesses
for $\mathfrak{S}(T)$ for content types, $T$, in \nexteg{} with the
new additions boxed.
\begin{ex}
\begin{subex}
\item If $T:\textit{ContType}$, then $\mathfrak{S}(T)$ is a type
\item The witnesses of $\mathfrak{S}(T)$ are characterized by
\begin{enumerate}
\item if $\varphi:T$ then $\varphi:\mathfrak{S}(T)$
\item \fbox{if $\varphi:\mathfrak{S}(T)$ and $\varphi:\textit{PPpty}$,
then $\mathcal{L}(\varphi):\mathfrak{S}(T)$}
\item \fbox{\begin{minipage}[t]{.9\linewidth}if $\varphi:\mathfrak{S}(T)$,
$\varphi\sqsubseteq\text{\smallrecord{
\smallmfield{scope}{$\psi$}{\textit{Ppty}}}}$ and
$\pi_1,\pi_2\in\mathrm{paths}(\psi.\text{bg})$, then $\varphi[\text{scope}=\psi_{\pi_1=\pi_2}:\textit{Ppty}]:\mathfrak{S}(T)$\end{minipage}}
\item if $\alpha\mathcal{O}\beta:T$, (for
some combination operation, $\mathcal{O}$) and
$\alpha\mathcal{O}_{i,j}\beta$ is defined (for some natural
numbers, $i$ and $j$), then $\alpha\mathcal{O}_{i,j}\beta:\mathfrak{S}(T)$
\item if $\varphi:T$ and $\varphi$ is in the range of `$\mathrm{storage}$', then
$\mathrm{storage}(\varphi):\mathfrak{S}(T)$
\item if $\varphi:T$ and `x$_i$' and $\varphi$ are appropriate
arguments to `$\mathrm{retrieve}$', then
$\mathrm{retrieve}(\text{x}_i,\varphi):\mathfrak{S}(T)$
\item nothing is a witness for $\mathfrak{S}(T)$ except as required above.
\end{enumerate}
\end{subex}
\label{ex:storage-donkey-type}
\end{ex}
Overall we can get a parametric content for \textit{no dog which
chases a cat catches it} which looks like \nexteg{} where
\savebox{\boxone}{\textbf{dog}$^\frown$\textbf{which}$^\frown$\textbf{chases}$^\frown$\textbf{a}$^\frown$\textbf{cat}} \usebox{\boxone}
and \savebox{\boxtwo}{\textbf{catches}$^\frown$\textbf{it}}\usebox{\boxtwo} represent parametric contents
which have not undergone operations introduced by $\mathfrak{S}$.
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{no(restr, scope)}}
\end{ex}
Given the semantics we have specified for the determiner \textit{no},
\preveg{} is \nexteg{}.
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{\record{
\tfield{X}{every$^w$(restr)}\\
\tfield{f}{$((x:\mathfrak{T}(X))\rightarrow\neg\mathfrak{P}(\text{scope})\{x\})$}
}}}
\end{ex}
We can paraphrase this content as ``for every dog which chases a cat
it's not the case that it's a dog which chases a cat$_i$ and catches
it$_i$'' where the subscript on \textit{cat} and \textit{it} indicates
that \textit{it} is anaphorically related to \textit{a cat}.
% The basic content related to \textit{no} is given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda Q$:\textit{Ppty} $\lambda
% P$:\textit{Ppty} . \record{\tfield{e}{no($Q$,$P|_{\mathcal{F}(Q)}$)}}
% \end{ex}
% As usual we abbreviate the content of \textit{dog} as `dog$'$'. The
% relative pronoun \textit{which} has the content specified for
% \textit{who} in Section~\ref{sec:long-distance}. (We are simplifying
% by not accounting for the gender distinction between the two.) We
% repeat this in \nexteg{} and will refer to it here as \textbf{which}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{wh}{\textit{Ind}}}
% . $\lambda P$:\textit{Ppty} . $P$\{$\mathfrak{s}$.wh\}
% \end{ex}
% The basic content of an utterance of \textit{chase} is given in
% \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_2$:\smallrecord{\smalltfield{x}{\textit{Quant}}} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{chase($r_1$.x, $r_2$.x)}}
% \end{ex}
% The indefinite article $a$ will have the content in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda Q$:\textit{Ppty} $\lambda
% P$:\textit{Ppty} . \record{\tfield{e}{exist($Q$, $P|_{\mathcal{F}(Q)}$)}}
% \end{ex}
% Thus the phrase \textit{a cat} will have the content in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda P$:\textit{Ppty}
% . \record{\tfield{e}{exist(cat$'$, $P|_{\mathcal{F}(\text{cat}')}$)}}
% \end{ex}
% We will refer to \preveg{} as \textbf{a$^\frown$cat}. Given this the
% content of \textit{chase a cat} will be \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{chase($r_1$.x,
% \textbf{a$^\frown$cat}($\mathfrak{s}$))}}
% \label{ex:chaseacat-noexport}
% \end{ex}
% Given that \textit{chase} is an extensional verb it will obey a
% constraint like (\ref{ex:mp-find}) on p.~\pageref{ex:mp-find}, as
% given in \nexteg{}.
% \begin{ex}
% $e$ : chase($a$, $Q$) iff $e$ : $Q$($\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}} . \smallrecord{\smalltfield{e}{chase$^{\dagger}$($a$,
% $r$.x)}})
% \end{ex}
% This means that we can construe the content to be a function which
% returns an equivalent type to that returned in
% (\ref{ex:chaseacat-noexport}). This new content is given in
% \nexteg{}.
% \begin{ex}
% $\lambda s$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{\textbf{a$^\frown$cat}($\mathfrak{s}$)($\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \smallrecord{\smalltfield{e}{chase$^\dagger$($r_1$.x, $r$.x)}})}}
% \end{ex}
% \preveg{} is equivalent to \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{exist(cat$'$, $\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}
% . \smallrecord{\smalltfield{e}{chase$^\dagger$($r_1$.x, $r$.x)}})}}
% \end{ex}
% In turn, \preveg{} is equivalent to \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{\record{\tfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \tfield{e}{\record{\tfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \tfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($r_1$.x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}
% \label{ex:chase-a-cat}
% \end{ex}
% We represent \preveg{} as \textbf{chase$^\frown$a$^\frown$cat}. From
% this we can form a ``sentence with a gap'' interpretation,
% \textbf{chase$^\frown$a$^\frown$cat$_S$}, in the manner described in
% Section~\ref{sec:long-distance}. This is given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{wh$_0$}{\textit{Ind}}} . $\lambda
% P$:\textit{Ppty} . $P$\{$\mathfrak{s}$.wh$_0$\}(\textbf{chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))
% \end{ex}
% Unpacking \preveg{} we obtain \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{wh$_0$}{\textit{Ind}}}
% . \record{\tfield{e}{\record{\tfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \tfield{e}{\record{\tfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \tfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($\mathfrak{s}$.wh$_0$, $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}
% \end{ex}
% Again following the analysis of long-distance dependencies developed
% in Section~\ref{sec:long-distance}, the content of \textit{which
% chased a cat} is given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} . \\
% \hspace*{1em} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \textbf{which}($\mathfrak{s}\oplus[\text{wh}=r_1.\text{x}$)($\lambda
% r_2$:\smallrecord{\smalltfield{x}{\textit{Ind}}} . \textbf{chase$^\frown$a$^\frown$cat$_S$}($\mathfrak{s}\oplus[\text{wh}_0=r_2.\text{x}]$)
% \end{ex}
% Unpacking \preveg{} gives us (\ref{ex:chase-a-cat}). That is, the content of
% \textit{which chased a cat} is identical with the content of
% \textit{chased a cat}. For clarity we will represent this content
% also as \textbf{which$^\frown$chase$^\frown$a$^\frown$cat}.
% Again following the proposal in Section~\ref{sec:long-distance} the
% content for \textit{dog which chases a cat} will be
% \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e$_1$}{dog$'$\{$r$.x\}}\\
% \tfield{e$_2$}{\textbf{which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$)\{$r$.x\}}}
% \end{ex}
% We call this
% \textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}. Now
% \textit{no dog which chases a cat} will correspond to \nexteg{a} which
% is equivalent to \nexteg{b}.
% \begin{ex}
% \begin{subex}
% \item $\lambda\mathfrak{s}$:\textit{Rec} $\lambda P$:\textit{Ppty}
% . \record{\tfield{e}{no(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$),
% $P|_{\mathcal{F}(\textbf{dog}^\frown\textbf{which}^\frown\textbf{chase}^\frown
% \textbf{a}^\frown\textbf{cat}(\mathfrak{s}))}$)}}
% \item $\lambda\mathfrak{s}$:\textit{Rec} $\lambda P$:\textit{Ppty}
% . \record{\tfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow\neg\mathfrak{P}(P|_{\mathcal{F}(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}(\mathfrak{s}))})\{\text{x}\}$)}}}}
% \end{subex}
% \label{ex:no-dog-which-chases-a-cat}
% \end{ex}
% Call this
% \textbf{no$^\frown$dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}.
% This is to combine with the content of \textit{catches it}, given in
% \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% $\lambda r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{catch$^\dagger$($r$.x, $\mathfrak{s}$.x$_0$)}}
% \end{ex}
% We will represent this as \textbf{catch$^\frown$it}.
% Using the S-combinator strategy to
% (\ref{ex:no-dog-which-chases-a-cat}b) yields \nexteg{a}, equivalently
% \nexteg{b}, which represents a reading of the sentence where
% \textit{it} is not captured and refers to a particular object provided
% by the context.
% \begin{ex}
% \begin{subex}
% \item $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&$\neg\mathfrak{P}(\lambda r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{catch$^\dagger$($r$.x, $\mathfrak{s}$.x$_0$)}}$|_{\mathcal{F}(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}(\mathfrak{s}))})\{\text{x}\}$)}}}}
% \item $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&\hspace*{2em}$\neg$\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$x$}{\textit{Ind}}\\
% \smalltfield{e$_1$}{dog$'$\{x\}}\\
% \smalltfield{e$_2$}{\smallrecord{\smalltfield{e}{\smallrecord{\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \smalltfield{e}{\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \smalltfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($\Uparrow^4$x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}}}}\\
% \smalltfield{e}{catch$^\dagger$($x$, $\mathfrak{s}$.x$_0$)}}
% )}}}}
% \end{subex}
% \end{ex}
% In terms of the notation in \preveg{b}, it is simple enough to see
% what needs to be done in order to change it to a case of donkey
% anaphora. The second argument to `catch$^\dagger$',
% `$\mathfrak{s}$.x$_0$', has to be changed so that it presents a path
% to the cat, that is, `$\mathfrak{c}$.e$_2$.e.x'. Also the dependence
% of this parametric content on `x$_0$' has to be removed. Thus the
% domain type for the $\lambda$-abstraction, currently
% `\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}', should be replaced
% by `\textit{Rec}'. The result would be \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&\hspace*{2em}$\neg$\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$x$}{\textit{Ind}}\\
% \smalltfield{e$_1$}{dog$'$\{x\}}\\
% \smalltfield{e$_2$}{\smallrecord{\smalltfield{e}{\smallrecord{\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \smalltfield{e}{\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \smalltfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($\Uparrow^4$x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}}}}\\
% \smalltfield{e}{catch$^\dagger$($x$, $\mathfrak{c}$.e$_2$.e.x)}}
% )}}}}
% \label{ex:no-dog-which-chases-a-cat-catches-it-captured}
% \end{ex}
% We will achieve this by introducing a notion of restriction on a
% parametric property in which we will allow anaphora to take place.
% Let us first consider a case without anaphora. Suppose that
% $\mathcal{P}$ is a parametric property of type
% $(T_1\rightarrow(T_2\rightarrow \textit{Type}))$ and that $T$ is a
% type then we define the restriction of $\mathcal{P}$ by $T$,
% $\mathcal{P}|^p_T$, to be \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:$T_1$ $\lambda r$:$T_2$\d{$\wedge$}$T$ . $\mathcal{P}(\mathfrak{s})(r)$
% \end{ex}
% Now suppose that $[\ell,v]$ is a field in $T_1$ and $\pi$ is a path in
% $T_2$ and we want to make an anaphoric association between $\ell$ and
% $\pi$. We define such a restriction,
% $\mathcal{P}|^p_{T,\ell\leadsto\pi}$ as \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:$T_1\ominus[\ell:v]$ $\lambda
% r$:$T_2$\d{$\wedge$}$T$ . $\mathcal{P}(\mathfrak{s}\oplus[\ell=r.\pi])(r)$
% \end{ex}
% To enable the capture of several pronouns, we let $\vec\Pi\subseteq
% T_1\times\text{paths}(T)$ such that $\vec\Pi$ is the graph of a one-one
% function (whose domain is included in the fields of $T_1$ and whose
% range is included in the paths of $T$). We then define
% $\mathcal{P}|^p_{T,\vec{\Pi}}$ to be \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:$T_1\ominus_{\text{set}}\vec{\Pi}_1$ $\lambda
% r$:$T_2$\d{$\wedge$}$T$ . $\mathcal{P}(\mathfrak{s}\oplus_{\text{set}}\{[\text{label}(\vec{\pi}_1)=r.\vec{\pi}_2]\mid\vec{\pi}\in\vec{\Pi}\})$
% \end{ex}
% If $\vec{\Pi}$ is
% $\{\langle\langle\ell_1,v_1\rangle,\pi_1\rangle,\ldots,\langle\langle\ell_n,v_n\rangle,\pi_n\rangle\}$
% then for convenience we represent $\mathcal{P}|^p_{T,\vec{\Pi}}$ as
% $\mathcal{P}|^p_{T,\ell_1\leadsto\pi_1,\ldots,\ell_n\leadsto\pi_n}$. Using
% this notation, the content of \textit{no dog which chases a cat catches
% it} where the pronoun is captured is \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&$\neg\mathfrak{P}$(\textbf{catch$^\frown$it}$|^p_{\mathcal{F}(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}(\mathfrak{s})),\text{x}_0\leadsto\text{e}_2.\text{e}.\text{x}}(\mathfrak{s})$)\{x\})}}}}
% \end{ex}
% Unpacking \preveg{} yields
% (\ref{ex:no-dog-which-chases-a-cat-catches-it-captured}).
This treatment of donkey anaphora is essentially similar to that of
\cite{Chierchia1995} in that it associates an existential reading the
pronoun it, that is, it is not the case that there is a cat which the
dog chases that it also catches. The dog does not catch any of the
cats it chases. If we use \textit{every} instead of \textit{no} we
get a reading which is paraphrased as ``every dog which chases a cat
is a dog which chases a cat and catches it''. This is what is known
in the literature as a \textit{weak reading} or a
\textit{$\exists$-reading}. It says that every dog which chases a cat
catches \textit{some} cat that it chases (but not necessarily all).
This reading may intuitively not be appropriate for \textit{every dog
that chases a cat catches it} which for many speakers would suggest
that the dogs catch all the cats they chase. However, the weak
reading is important for the examples in \nexteg{}.
% Notice that \preveg{}
% forces what is known in the literature as a \textit{strong} reading
% for the donkey anaphora. That is, none of the dogs which chase a cat
% catch \textit{any} of the cats which they chase. That monotone
% decreasing quantifiers force such strong readings was noted, for
% example, by [Chierchia???? Pelletier????]. Monotone increasing
% quantifiers, however, allow \textit{weak} readings. Examples of
% donkey sentences mentioned in the literature that have naturally weak
% readings are given in \nexteg{}.
\begin{ex}
\begin{subex}
\item Every person who had a dime put it in the parking
meter. \citep{PelletierSchubert1989}
\item Every man who has a daughter thinks she is the most beautiful
girl in the world \citep{Cooper1979}
\end{subex}
\end{ex}
\preveg{a} does not seem to suggest that anybody who had several dimes
put them all in the meter and \preveg{b} does not seem to
commit a man who has two daughters to believe the contradictory
proposition that they are both the one and only most beautiful girl in
the world.
%
% @@
%
% Let us consider the content for \textit{every person who
% had a dime put it in the parking meter} given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{person$^\frown$who$^\frown$have$^\frown$a$^\frown$dime}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&\hspace*{2em}\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$x$}{\textit{Ind}}\\
% \smalltfield{e$_1$}{person$'$\{x\}}\\
% \smalltfield{e$_2$}{\smallrecord{\smalltfield{e}{\smallrecord{\smalltfield{x}{$\mathfrak{T}$(dime$'$)}\\
% % \smalltfield{e}{\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% % \smalltfield{e}{dime(x)}}}\\
% % \smalltfield{e}{\smallrecord{\smalltfield{e}{have$^\dagger$($\Uparrow^4$x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}}}}\\
% \smalltfield{e}{put\_in\_the\_meter$^\dagger$($x$, $\mathfrak{c}$.e$_2$.e.x)}}
% )}}}}
% \end{ex}
% \preveg{} is exactly similar to
% (\ref{ex:no-dog-which-chases-a-cat-catches-it-captured}) modulo the
% properties and predicates involved except that there is no negation in
% \preveg{}. \preveg{} requires then that every person who had a dime
% is a person who had a dime and put it in the meter, that is, a weak
% reading which requires only that each relevant person put some dime in
% the meter, not all of their dimes.
What then do we say about the
original donkey sentences like \textit{every farmer who owns a donkey
likes it} which were analyzed by Geach and the classical analyses in
DRT and type theory as having a strong reading in which every farmer
who owns a donkey likes any donkey that he owns? One option is to say
that we only need the weak reading for such sentences as it is
consistent with the stronger reading. Many speakers feel that it
unclear what the sentence means if some man owns more than one donkey.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{farmer$^\frown$who$^\frown$owns$^\frown$a$^\frown$donkey}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&\hspace*{2em}\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$x$}{\textit{Ind}}\\
% \smalltfield{e$_1$}{farmer$'$\{x\}}\\
% \smalltfield{e$_2$}{\smallrecord{\smalltfield{e}{\smallrecord{\smalltfield{x}{$\mathfrak{T}$(donkey$'$)}\\
% \smalltfield{e}{\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{donkey(x)}}}\\
% \smalltfield{e}{\smallrecord{\smalltfield{e}{have$^\dagger$($\Uparrow^4$x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}}}}\\
% \smalltfield{e}{like$^\dagger$($x$, $\mathfrak{c}$.e$_2$.e.x)}}
% )}}}}
% \label{ex:donkey-weak}
% \end{ex}
That is,
\textit{every farmer who owns a donkey likes it} requires that for
every donkey owning farmer there is at least one donkey the farmer
owns such that she likes it. This allows for the farmers to like all
their donkeys but does not require it. (See \citealp{Kanazawa1994} for
a discussion of this.) In the case of \textit{every dog which chases
a cat catches it} I have the following intuition:
\begin{quote}
if there is a dog under consideration which is involved in two
distinct cat-chasing events (with a single cat) and only succeeds in catching the cat in
one of the two events, then this seems to make the sentence false;
if there is a dog under consideration which is involved in a single
event of chasing two cats and only succeeds in catching one of the
cats in that event, then it seems that the sentence could still be
true.
\end{quote}
This suggests an analysis which requires that every relevant
cat-chasing event must involve the catching of at least one of the
cats chased in that event. Firm judgements concerning such intuitions
are notoriously hard to come by. \cite{Chierchia1995} argues that the
strong $\forall$-reading is necessary because of examples like
\nexteg{}.
\begin{ex}
Every man who owned a slave owned his offspring
\end{ex}
\preveg{} is a modification of an example in \cite{Heim1990} which is
used to make a different argument. It seems like a single instance of
somebody owning a slave but not the slave's offspring would be
sufficient to falsify \preveg{}. Though again, in the case of a slave
who has several offspring one of which is owned by somebody else, it
seems to me that it is unclear whether that is sufficient to falsify
the sentence.
\label{pg:donkey-purification-universal}
One option is to recreate the original Geach reading by
using the variant of the purification operation, `$\mathfrak{P}^\forall$', in
(\ref{ex:purification-universal}), p.~\pageref{ex:purification-universal} which introduces a function on local contexts.
% \begin{ex}
% If $P$ : \textit{Ppty}, then
% \begin{quote}
% if $P$.bg$^x$ = $P$.bg, then
% \begin{quote}
% $\mathfrak{P}(P)=P$
% \end{quote}
% otherwise:
% \begin{quote}
% $\mathfrak{P}(P)$ is $\ulcorner\lambda r_1$:$P$.bg$^{\text{x}}$
% . ($(r_2\!:\!P.\text{bg}\!\parallel\!\!\text{\smallrecord{\field{x}{$r$.x}}})\rightarrow$
% \record{
% \tfield{e}{$P(r_2)$}})$\urcorner$
% \end{quote}
% \end{quote}
% %\label{ex:purification-classic}
% \end{ex}
Using `$\mathfrak{P}^\forall$' instead of `$\mathfrak{P}$' will have the
consequence that the content of \textit{every farmer who owns a donkey
likes it} will be \nexteg{}.
\savebox{\boxone}{\textbf{farmer}$^\frown$\textbf{who}$^\frown$\textbf{owns}$^\frown$\textbf{a}$^\frown$\textbf{donkey}}
\savebox{\boxtwo}{\textbf{likes}$^\frown$\textbf{it}}
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{every(restr, scope)}}
\end{ex}
Given the general witness condition associated with `every', \preveg{} is
equivalent to \nexteg{}.
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{\record{
\tfield{X}{every$^w$(restr)}\\
\tfield{f}{$((x:\mathfrak{T}(X))\rightarrow\mathfrak{P}(\text{scope})\{x\})$}
}}}
\end{ex}
If we use a variant of this witness condition which uses
`$\mathfrak{P}^\forall$' instead of `$\mathfrak{P}$' we have
\nexteg{}.
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{\record{
\tfield{X}{every$^w$(restr)}\\
\tfield{f}{$((x:\mathfrak{T}(X))\rightarrow\mathfrak{P}^\forall(\text{scope})\{x\})$}
}}}
\end{ex}
Let us check that \preveg{} does in fact give us the strong
$\forall$-reading. We will do this by showing that the value
associated with the label `scope' will be paraphrasable as ``the
property of being an individual such that if it's a farmer who owns a
donkey, she likes that donkey'', that is, likes every donkey she
owns. We can show this by unpacking the expression representing the
scope in \preveg{}. `\textbf{likes}$^\frown$\textbf{it}', according to
our treatment of free pronouns and extensional verbs, will be
\nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{Cntxt}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{Assgnmnt}\\
\smalltfield{x$_0$}{\textit{Ind}}}}} .
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}} . \record{
\tfield{e}{like$^\dagger$($r$.x, $c.\mathfrak{s}$.x$_0$)}}$\urcorner\urcorner$
\end{ex}
Using the definition of the localization operation, $\mathcal{L}$, in
(\ref{ex:localization}), we can see that
`$\mathcal{L}(\textbf{likes}^\frown\textbf{it})$' is \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\textit{Cntxt} . $\ulcorner\lambda
r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}}}} . \record{
\tfield{e}{like$^\dagger$($r$.x, $r.\mathfrak{c}.\mathfrak{s}$.x$_0$)}}$\urcorner\urcorner$
\end{ex}
Applying \preveg{} to any context, $c$, will obtain \nexteg{}.
\begin{ex}
$\ulcorner\lambda
r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}}}} . \record{
\tfield{e}{like$^\dagger$($r$.x, $r.\mathfrak{c}.\mathfrak{s}$.x$_0$)}}$\urcorner$
\end{ex}
Restricting \preveg{} by
`$\mathcal{F}(\textbf{farmer}^\frown\textbf{who}^\frown\textbf{owns}^\frown\textbf{a}^\frown\textbf{donkey})$',
yields \nexteg{}.
\begin{ex}
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
}}\\
\smalltfield{e$_1$}{dog(x)}\\
\smalltfield{e$_2$}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
\smalltfield{e}{chase$^\dagger$($\Uparrow$x, x)}}}}
.
\record{
\tfield{e}{catch$^{\dagger}$($r$.x, $r.\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}}$\urcorner$
\end{ex}
We can paraphrase this as ``the property of being a dog which chases a
cat and there is something which it catches''. In order to obtain the
anaphora we need to align the following two paths in the domain type
of this function: `$\mathfrak{c}.\mathfrak{s}.\text{x}_0$' and
`e$_2$.x'. This we do in \nexteg{} by creating a manifest field on
the former path.
\begin{ex}
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$\Uparrow^2$e$_2$.x}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
}}\\
\smalltfield{e$_1$}{dog(x)}\\
\smalltfield{e$_2$}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
\smalltfield{e}{chase$^\dagger$($r$.x, x)}}}}
.
\record{
\tfield{e}{catch$^{\dagger}$($r$.x, $r.\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}}$\urcorner$
\end{ex}
We can paraphrase this as ``the property of being a dog which chases a
cat and catches that cat''.
In order to include such properties with aligned paths as the scope of
quantifiers in our interpretations, we will first generalize the
characterization of alignment of paths given on
p.~\pageref{pg:path-alignment-types}f to functions in \nexteg{}.
\begin{ex}
If $\varphi=\ulcorner\lambda r\!:\!T\ .\ \psi\urcorner$ and
$\pi_1,\pi_2\in\mathrm{paths}(T)$, then
\begin{quote}
$\varphi_{\pi_1=\pi_2}=\ulcorner\lambda r\!:\!T_{\pi_1=\pi_2}\ .\
\psi\urcorner$
\end{quote}
\end{ex}
We then add two further clauses to the characterization of witnesses
for $\mathfrak{S}(T)$ for content types, $T$, in \nexteg{} with the
new additions boxed.
\begin{ex}
\begin{subex}
\item If $T:\textit{ContType}$, then $\mathfrak{S}(T)$ is a type
\item The witnesses of $\mathfrak{S}(T)$ are characterized by
\begin{enumerate}
\item if $\varphi:T$ then $\varphi:\mathfrak{S}(T)$
\item \fbox{if $\varphi:\mathfrak{S}(T)$ and $\varphi:\textit{PPpty}$,
then $\mathcal{L}(\varphi):\mathfrak{S}(T)$}
\item \fbox{\begin{minipage}[t]{.9\linewidth}if $\varphi:\mathfrak{S}(T)$,
$\varphi\sqsubseteq\text{\smallrecord{
\smallmfield{scope}{$\psi$}{\textit{Ppty}}}}$ and
$\pi_1,\pi_2\in\mathrm{paths}(\psi.\text{bg})$, then $\varphi[\text{scope}=\psi_{\pi_1=\pi_2}:\textit{Ppty}]:\mathfrak{S}(T)$\end{minipage}}
\item if $\alpha\mathcal{O}\beta:T$, (for
some combination operation, $\mathcal{O}$) and
$\alpha\mathcal{O}_{i,j}\beta$ is defined (for some natural
numbers, $i$ and $j$), then $\alpha\mathcal{O}_{i,j}\beta:\mathfrak{S}(T)$
\item if $\varphi:T$ and $\varphi$ is in the range of `$\mathrm{storage}$', then
$\mathrm{storage}(\varphi):\mathfrak{S}(T)$
\item if $\varphi:T$ and `x$_i$' and $\varphi$ are appropriate
arguments to `$\mathrm{retrieve}$', then
$\mathrm{retrieve}(\text{x}_i,\varphi):\mathfrak{S}(T)$
\item nothing is a witness for $\mathfrak{S}(T)$ except as required above.
\end{enumerate}
\end{subex}
\label{ex:storage-donkey-type}
\end{ex}
Overall we can get a parametric content for \textit{no dog which
chases a cat catches it} which looks like \nexteg{} where
\savebox{\boxone}{\textbf{dog}$^\frown$\textbf{which}$^\frown$\textbf{chases}$^\frown$\textbf{a}$^\frown$\textbf{cat}} \usebox{\boxone}
and \savebox{\boxtwo}{\textbf{catches}$^\frown$\textbf{it}}\usebox{\boxtwo} represent parametric contents
which have not undergone operations introduced by $\mathfrak{S}$.
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{no(restr, scope)}}
\end{ex}
Given the semantics we have specified for the determiner \textit{no},
\preveg{} is \nexteg{}.
\begin{ex}
$\lambda c$:\textit{Cntxt} . \record{
\mfield{restr}{\usebox{\boxone}($c$)}{\textit{Ppty}}\\
\mfield{scope}{$(\mathcal{L}(\text{\usebox{\boxtwo}})(c)|_{\mathcal{F}(\text{\usebox{\boxone}})})_{\mathfrak{c}.\mathfrak{s}.\text{x}_0=\text{e}_2.\text{x}}$}{\textit{Ppty}}\\
\smalltfield{e}{\record{
\tfield{X}{every$^w$(restr)}\\
\tfield{f}{$((x:\mathfrak{T}(X))\rightarrow\neg\mathfrak{P}(\text{scope})\{x\})$}
}}}
\end{ex}
We can paraphrase this content as ``for every dog which chases a cat
it's not the case that it's a dog which chases a cat$_i$ and catches
it$_i$'' where the subscript on \textit{cat} and \textit{it} indicates
that \textit{it} is anaphorically related to \textit{a cat}.
% The basic content related to \textit{no} is given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda Q$:\textit{Ppty} $\lambda
% P$:\textit{Ppty} . \record{\tfield{e}{no($Q$,$P|_{\mathcal{F}(Q)}$)}}
% \end{ex}
% As usual we abbreviate the content of \textit{dog} as `dog$'$'. The
% relative pronoun \textit{which} has the content specified for
% \textit{who} in Section~\ref{sec:long-distance}. (We are simplifying
% by not accounting for the gender distinction between the two.) We
% repeat this in \nexteg{} and will refer to it here as \textbf{which}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{wh}{\textit{Ind}}}
% . $\lambda P$:\textit{Ppty} . $P$\{$\mathfrak{s}$.wh\}
% \end{ex}
% The basic content of an utterance of \textit{chase} is given in
% \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_2$:\smallrecord{\smalltfield{x}{\textit{Quant}}} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{chase($r_1$.x, $r_2$.x)}}
% \end{ex}
% The indefinite article $a$ will have the content in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda Q$:\textit{Ppty} $\lambda
% P$:\textit{Ppty} . \record{\tfield{e}{exist($Q$, $P|_{\mathcal{F}(Q)}$)}}
% \end{ex}
% Thus the phrase \textit{a cat} will have the content in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda P$:\textit{Ppty}
% . \record{\tfield{e}{exist(cat$'$, $P|_{\mathcal{F}(\text{cat}')}$)}}
% \end{ex}
% We will refer to \preveg{} as \textbf{a$^\frown$cat}. Given this the
% content of \textit{chase a cat} will be \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{chase($r_1$.x,
% \textbf{a$^\frown$cat}($\mathfrak{s}$))}}
% \label{ex:chaseacat-noexport}
% \end{ex}
% Given that \textit{chase} is an extensional verb it will obey a
% constraint like (\ref{ex:mp-find}) on p.~\pageref{ex:mp-find}, as
% given in \nexteg{}.
% \begin{ex}
% $e$ : chase($a$, $Q$) iff $e$ : $Q$($\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}} . \smallrecord{\smalltfield{e}{chase$^{\dagger}$($a$,
% $r$.x)}})
% \end{ex}
% This means that we can construe the content to be a function which
% returns an equivalent type to that returned in
% (\ref{ex:chaseacat-noexport}). This new content is given in
% \nexteg{}.
% \begin{ex}
% $\lambda s$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{\textbf{a$^\frown$cat}($\mathfrak{s}$)($\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \smallrecord{\smalltfield{e}{chase$^\dagger$($r_1$.x, $r$.x)}})}}
% \end{ex}
% \preveg{} is equivalent to \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{exist(cat$'$, $\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}
% . \smallrecord{\smalltfield{e}{chase$^\dagger$($r_1$.x, $r$.x)}})}}
% \end{ex}
% In turn, \preveg{} is equivalent to \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{\record{\tfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \tfield{e}{\record{\tfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \tfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($r_1$.x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}
% \label{ex:chase-a-cat}
% \end{ex}
% We represent \preveg{} as \textbf{chase$^\frown$a$^\frown$cat}. From
% this we can form a ``sentence with a gap'' interpretation,
% \textbf{chase$^\frown$a$^\frown$cat$_S$}, in the manner described in
% Section~\ref{sec:long-distance}. This is given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{wh$_0$}{\textit{Ind}}} . $\lambda
% P$:\textit{Ppty} . $P$\{$\mathfrak{s}$.wh$_0$\}(\textbf{chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))
% \end{ex}
% Unpacking \preveg{} we obtain \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{wh$_0$}{\textit{Ind}}}
% . \record{\tfield{e}{\record{\tfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \tfield{e}{\record{\tfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \tfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($\mathfrak{s}$.wh$_0$, $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}
% \end{ex}
% Again following the analysis of long-distance dependencies developed
% in Section~\ref{sec:long-distance}, the content of \textit{which
% chased a cat} is given in \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} . \\
% \hspace*{1em} $\lambda
% r_1$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \textbf{which}($\mathfrak{s}\oplus[\text{wh}=r_1.\text{x}$)($\lambda
% r_2$:\smallrecord{\smalltfield{x}{\textit{Ind}}} . \textbf{chase$^\frown$a$^\frown$cat$_S$}($\mathfrak{s}\oplus[\text{wh}_0=r_2.\text{x}]$)
% \end{ex}
% Unpacking \preveg{} gives us (\ref{ex:chase-a-cat}). That is, the content of
% \textit{which chased a cat} is identical with the content of
% \textit{chased a cat}. For clarity we will represent this content
% also as \textbf{which$^\frown$chase$^\frown$a$^\frown$cat}.
% Again following the proposal in Section~\ref{sec:long-distance} the
% content for \textit{dog which chases a cat} will be
% \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} $\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e$_1$}{dog$'$\{$r$.x\}}\\
% \tfield{e$_2$}{\textbf{which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$)\{$r$.x\}}}
% \end{ex}
% We call this
% \textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}. Now
% \textit{no dog which chases a cat} will correspond to \nexteg{a} which
% is equivalent to \nexteg{b}.
% \begin{ex}
% \begin{subex}
% \item $\lambda\mathfrak{s}$:\textit{Rec} $\lambda P$:\textit{Ppty}
% . \record{\tfield{e}{no(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$),
% $P|_{\mathcal{F}(\textbf{dog}^\frown\textbf{which}^\frown\textbf{chase}^\frown
% \textbf{a}^\frown\textbf{cat}(\mathfrak{s}))}$)}}
% \item $\lambda\mathfrak{s}$:\textit{Rec} $\lambda P$:\textit{Ppty}
% . \record{\tfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow\neg\mathfrak{P}(P|_{\mathcal{F}(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}(\mathfrak{s}))})\{\text{x}\}$)}}}}
% \end{subex}
% \label{ex:no-dog-which-chases-a-cat}
% \end{ex}
% Call this
% \textbf{no$^\frown$dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}.
% This is to combine with the content of \textit{catches it}, given in
% \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% $\lambda r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{catch$^\dagger$($r$.x, $\mathfrak{s}$.x$_0$)}}
% \end{ex}
% We will represent this as \textbf{catch$^\frown$it}.
% Using the S-combinator strategy to
% (\ref{ex:no-dog-which-chases-a-cat}b) yields \nexteg{a}, equivalently
% \nexteg{b}, which represents a reading of the sentence where
% \textit{it} is not captured and refers to a particular object provided
% by the context.
% \begin{ex}
% \begin{subex}
% \item $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&$\neg\mathfrak{P}(\lambda r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{catch$^\dagger$($r$.x, $\mathfrak{s}$.x$_0$)}}$|_{\mathcal{F}(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}(\mathfrak{s}))})\{\text{x}\}$)}}}}
% \item $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&\hspace*{2em}$\neg$\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$x$}{\textit{Ind}}\\
% \smalltfield{e$_1$}{dog$'$\{x\}}\\
% \smalltfield{e$_2$}{\smallrecord{\smalltfield{e}{\smallrecord{\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \smalltfield{e}{\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \smalltfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($\Uparrow^4$x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}}}}\\
% \smalltfield{e}{catch$^\dagger$($x$, $\mathfrak{s}$.x$_0$)}}
% )}}}}
% \end{subex}
% \end{ex}
% In terms of the notation in \preveg{b}, it is simple enough to see
% what needs to be done in order to change it to a case of donkey
% anaphora. The second argument to `catch$^\dagger$',
% `$\mathfrak{s}$.x$_0$', has to be changed so that it presents a path
% to the cat, that is, `$\mathfrak{c}$.e$_2$.e.x'. Also the dependence
% of this parametric content on `x$_0$' has to be removed. Thus the
% domain type for the $\lambda$-abstraction, currently
% `\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}', should be replaced
% by `\textit{Rec}'. The result would be \nexteg{}.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec}
% . \smallrecord{\smalltfield{e}{\record{\tfield{X}{every$^w$(\textbf{dog$^\frown$which$^\frown$chase$^\frown$a$^\frown$cat}($\mathfrak{s}$))}\\
% \tfield{f}{(($x:\mathfrak{T}(\text{X}))\rightarrow$\\
% &&\hspace*{2em}$\neg$\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$x$}{\textit{Ind}}\\
% \smalltfield{e$_1$}{dog$'$\{x\}}\\
% \smalltfield{e$_2$}{\smallrecord{\smalltfield{e}{\smallrecord{\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
% \smalltfield{e}{\smallrecord{\smalltfield{$\mathfrak{c}$}{\smallrecord{\smallmfield{x}{$\Uparrow^2$x}{\textit{Ind}}\\
% \smalltfield{e}{cat(x)}}}\\
% \smalltfield{e}{\smallrecord{\smalltfield{e}{chase$^\dagger$($\Uparrow^4$x,
% $\Uparrow\!\mathfrak{c}$.x)}}}}}}}}}}}\\
% \smalltfield{e}{catch$^\dagger$($x$, $\mathfrak{c}$.e$_2$.e.x)}}
% )}}}}
% \label{ex:no-dog-which-chases-a-cat-catches-it-captured}
% \end{ex}