-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscrap1.tex
4149 lines (3358 loc) · 172 KB
/
scrap1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\section{Anaphora}
\label{sec:anaph}
We will treat anaphora by adding to the storage mechanism we have just
introduced. In informal terms the idea is that if the content type of
an utterance has something corresponding to \nexteg{a} as a witness
then it will also have something corresponding to \nexteg{b} as a
witness where $x_1$ has been anaphorically related to $x_0$.
\begin{ex}
\begin{subex}
\item $x_0$ thinks that $x_1$ has succeeded
\item $x_0$ thinks that $x_0$ has succeeded
\end{subex}
\end{ex}
Thus in general the content type yielded by the grammatical resources
will be underspecified as to whether there is anaphora or not but will
nevertheless delimit what the anaphoric possibilities are. Anaphora
will be accounted for at the point of combination. This is
illustrated schematically in \nexteg{}.
\begin{ex}
\begin{subex}
\item $x_o$ + thinks that $x_1$ has succeeded = $x_0$ thinks that
$x_1$ has succeeded
\item If `$x_o$ + thinks that $x_1$ has succeeded' is an
interpretation, then `$x_o$ + (thinks that $x_1$ has
succeeded)[$x_1\leadsto x_0$]' is an interpretation
\end{subex}
\end{ex}
We will, of course, not be implementing this in terms of replacing
variables as in \preveg{} but rather in adjusting the contexts of
interpretation associated with pronoun utterances. For example, we
will define a variant of the combination operation `@', `@$_{i,j}$' which
anaphorically relates a pronoun associated with the context path
`$\mathfrak{s}.j$' to one associated with the context path
`$\mathfrak{s}.i$'. This is given in \nexteg{}, which is the same as
the characterization of `@' except for the addition of the boxed material.
\begin{ex}
If $\alpha$ : \smallrecord{\smalltfield{bg}{\textit{CntxtType}}\\
\smalltfield{fg}{(bg$\rightarrow$($T_1\rightarrow
T_2$))}}
and $\beta$ : \smallrecord{\smalltfield{bg}{\textit{CntxtType}}\\
\smalltfield{fg}{(bg$\rightarrow T_1$)}}
\fbox{and $\alpha.\text{bg}\sqsubseteq$ \smallrecord{
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_i$}{\textit{Ind}}}}} and
$\mathrm{incr}_{\mathfrak{s}.\text{x},\mathfrak{q}.\text{x}}(\beta.\text{bg},\alpha.\text{bg})\sqsubseteq$
\smallrecord{
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_j$}{\textit{Ind}}}}}} \fbox{but $\mathrm{incr}_{\mathfrak{s}.\text{x},\mathfrak{q}.\text{x}}(\beta.\text{bg},\alpha.\text{bg})\not\sqsubseteq$
\smallrecord{
\smalltfield{$\mathfrak{q}$}{\smallrecord{
\smalltfield{x$_j$}{\textit{PQuant}}}}}},
then the \textit{combination of $\alpha$ and
$\beta$ based on functional application \fbox{and anaphoric
relation of $j$ to $i$}}, $\alpha\text{@}_{\fbox{i,j}}\beta$, is
\begin{quote}
$\ulcorner\lambda c$:$[\alpha.\text{bg}]_{\mathfrak{c}\leadsto\mathfrak{c}.\text{f}}$
\d{$\wedge$}$[\mathrm{incr}_{\mathfrak{s}.\text{x},\mathfrak{q}.\text{x}}([\beta.\text{bg}]_{\mathfrak{c}\leadsto\mathfrak{c}.\text{a}},\alpha.\text{bg})]_{\boxed{\scriptstyle\mathfrak{s}.\text{x}_j\leadsto\mathfrak{s}.\text{x}_i}}$
. \\ \hspace*{2em}$[\alpha]_{\mathfrak{c}\leadsto\mathfrak{c}.\text{f}}(c)([\mathrm{incr}_{\mathfrak{s}.\text{x},\mathfrak{q}.x}([\beta.\text{fg}]_{\mathfrak{c}\leadsto\mathfrak{c}.\text{a}},\alpha.\text{bg})]_{\boxed{\scriptstyle\mathfrak{s}.\text{x}_j\leadsto\mathfrak{s}.\text{x}_i}}(c))\urcorner$
\end{quote}
\label{ex:combine-align}
\end{ex}
We can define similar modifications, $\mathcal{O}_{i,j}$ for the other combination
operators, $\mathcal{O}$. Note that these additional combination
operations as currently formulated will only allow one anaphoric
relation to be introduced with each combination. A more complete
treatment will probably need a generalized formulation in which there
are several pairs, $\langle i,j\rangle$, which are related simultaneously.
We can now add contents with anaphora to
our characterization of $\mathfrak{S}(T)$ given in
(\ref{ex:storage-type}) as in \nexteg{} where we again use boxing to
indicate the new material.
\begin{ex}
\begin{subex}
\item If $T:\textit{ContType}$, then $\mathfrak{S}(T)$ is a type
\item The witnesses of $\mathfrak{S}(T)$ are characterized by
\begin{enumerate}
\item if $\varphi:T$ then $\varphi:\mathfrak{S}(T)$
\item \fbox{\begin{minipage}[t]{.85\linewidth}if $\alpha\mathcal{O}\beta:T$, (for
some combination operation, $\mathcal{O}$) and
$\alpha\mathcal{O}_{i,j}\beta$ is defined (for some natural
numbers, $i$ and $j$), then $\alpha\mathcal{O}_{i,j}\beta:\mathfrak{S}(T)$\end{minipage}}
\item if $\varphi:T$ and $\varphi$ is in the range of `$\mathrm{storage}$', then
$\mathrm{storage}(\varphi):\mathfrak{S}(T)$
\item if $\varphi:T$ and `x$_i$' and $\varphi$ are appropriate
arguments to `$\mathrm{retrieve}$', then
$\mathrm{retrieve}(\text{x}_i,\varphi):\mathfrak{S}(T)$
\item nothing is a witness for $\mathfrak{S}(T)$ except as required above.
\end{enumerate}
\end{subex}
\label{ex:storage-anaph-type}
\end{ex}
% \todo{This doesn't allow for more than one anaphoric relation
% introduced with some combination. Problem with some interpretation
% just happening to be identical with $\alpha\mathcal{O}\beta$
% although obtained differently.}
We will now take some examples of key anaphoric phenomena and discuss
how we could use these tools to account for them.
\paragraph{\textit{No girl thinks she failed}}
\label{sec:direct-binding}
Given the strategy we suggested in Section~\ref{sec:unbound} for
interpreting unbound pronouns the foreground of a content for
\textit{she failed} would be parallel to example
(\ref{ex:he-leave-abbrev}c) as in \nexteg{}, where we in addition
express this as the content type obtained by $\mathfrak{S}$.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
}
.
\record{\tfield{e}{fail($c.\mathfrak{s}$.x$_0$)}}$\urcorner^{\mathfrak{S}}$
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}} . \record{\tfield{e}{fail($\mathfrak{s}$.x$_0$)}}
\end{ex}
Call this \textbf{she$^\frown$failed}. Then the
content type for \textit{thinks she failed} is \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}
}
. $\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}} .
\record{\tfield{e}{think($r$.x, \smallrecord{
\smalltfield{e}{fail($c.\mathfrak{s}$.x$_0$)}})}}$\urcorner\urcorner^{\mathfrak{S}}$
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% . $\lambda r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{think($r$.x,
% \textbf{she$^\frown$failed}($\mathfrak{s}$))}}
\label{ex:thinks-she-failed-x0}
\end{ex}
Call this \textbf{thinks$^\frown$she$^\frown$failed}. Here
\textit{she} is still a free occurrence of a pronoun dependent on the
context for resolution. % An alternative interpretation is \nexteg{},
% where the pronoun has become bound as the subject of the property.
% \begin{ex}
% $\lambda\mathfrak{s}$:\textit{Rec} . $\lambda
% r$:\smallrecord{\smalltfield{x}{\textit{Ind}}}
% . \record{\tfield{e}{think($r$.x, \textbf{she$^\frown$failed}($\mathfrak{s}\oplus$\smallrecord{\field{x$_0$}{$r$.x}}))}}
% \end{ex}
% We will call this a logophoric interpretation of the verb phrase,
% \textbf{thinks$^\frown$she$^\frown$failed$_{\mathrm{lg}}$}. These two
% readings for the verb-phrase yields two alternatives for the complete
% sentence, one where the pronoun remains unbound as in \nexteg{a} and
% one where it is bound as in \nexteg{b}.
% \begin{ex}
% \begin{subex}
% \item
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}}
% . \record{\tfield{e}{no(girl$'$, \textbf{thinks$^\frown$she$^\frown$failed$_{x_0}$}($\mathfrak{s}$))}}
% \item $\lambda\mathfrak{s}$:\textit{Rec}
% . \record{\tfield{e}{no(girl$'$, \textbf{thinks$^\frown$she$^\frown$failed$_{\mathrm{lg}}$}($\mathfrak{s}$))}}
% \end{subex}
% \end{ex}
% Let us now consider an option where we store the interpretation of
% \textit{no girl}. For this we ill use the abbreviatory notation
% \nexteg{b} for \nexteg{a}
% \begin{ex}
% \begin{subex}
% \item \record{\field{bg}{$T_1$}\\
% \field{fg}{$\lambda\mathfrak{v}$:$T_1$ . $T_2(\mathfrak{v})$}}
% \item $\ulcorner\lambda\mathfrak{v}$:$T_1$ . $T_2(\mathfrak{v})\urcorner$
% \end{subex}
% \end{ex}
% [????We should introduce this notation from the beginning, starting
% p. 121 ``Parametric contents as we have presented them so far are
% problematic...''] If $\frec{f}$ is a record as
% characterized in \preveg{} then we use the notation $\frec{f}(a)$ to
% represent $\frec{f}.\text{fg}(a)$, that is, $f(a)$.
The content type associated with \textit{no girl} will be \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}} . $\lambda
P$:\textit{Ppty} . \smallrecord{
\smallmfield{restr}{girl$'$}{\textit{Ppty}}\\
\smallmfield{scope}{$P$}{\textit{Ppty}}\\
\smalltfield{e}{no(restr, scope)}}$\urcorner^{\mathfrak{S}}$
\label{ex:no-girl-cont-type}
\end{ex}
Let us represent the \textit{generator} of this type, that is,
\nexteg{}, by `no$'$(girl$'$)'.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}} . $\lambda
P$:\textit{Ppty} . \smallrecord{
\smallmfield{restr}{girl$'$}{\textit{Ppty}}\\
\smallmfield{scope}{$P$}{\textit{Ppty}}\\
\smalltfield{e}{no(restr, scope)}}$\urcorner$
\end{ex}
This means that one witness for the type (\ref{ex:no-girl-cont-type})
is \nexteg{} where `no$'$(girl$'$)' has been stored.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{q}$}{\smallrecord{
\smallmfield{x$_0$}{no$'$(girl$'$)}{\textit{PQuant}}}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}} . $\lambda
P$:\textit{Ppty} . $P\{c.\mathfrak{s}.\text{x}_0\}\urcorner$
\end{ex}
Note that the context type for this parametric content has the path
`$\mathfrak{s}$.x$_0$' which means that it is available for anaphoric
version of combination operations, thus enabling \textit{she} in
\textit{thinks she failed} to be related to
`$\mathfrak{s}$.x$_0$'. This can be achieved by the combination of
parametric contents expressed in \nexteg{a} which is identical with
\nexteg{b}. This uses `@$_{0,1}$' as characterized in
(\ref{ex:combine-align}).
\begin{ex}
\begin{subex}
\item $\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{q}$}{\smallrecord{
\smallmfield{x$_0$}{no$'$(girl$'$)}{\textit{PQuant}}}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}} . $\lambda
P$:\textit{Ppty} . $P\{c.\mathfrak{s}.\text{x}_0\}\urcorner$
@$_{0,1}$
$\ulcorner\lambda c$:\smallrecord{\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}
}
. $\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}} .
\record{\tfield{e}{think($r$.x, \smallrecord{
\smalltfield{e}{fail($c.\mathfrak{s}$.x$_0$)}})}}$\urcorner\urcorner$
\item $\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{q}$}{\smallrecord{
\smallmfield{x$_0$}{no$'$(girl$'$)}{\textit{PQuant}}}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}}}} . \record{
\tfield{e}{think($c.\mathfrak{s}.\text{x}_0$, \smallrecord{
\smalltfield{e}{fail($c.\mathfrak{s}.\text{x}_0$)}})}}$\urcorner$
\end{subex}
\end{ex}
Application of `$\mathrm{retrieve}$' to the content \preveg{} will obtain a content where
the scope of the quantifier is the property of ``being a girl who
thinks she (the girl) failed''. The whole content is given in
\nexteg{} where \nexteg{a--c} are identical.
\begin{ex}
\begin{subex}
\item $\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}}}}}} . \\
\hspace*{1em}($\lambda P$:\textit{Ppty} . \record{
\mfield{restr}{girl$'$}{\textit{Ppty}}\\
\mfield{scope}{$P|_{\mathcal{F}(\text{girl}')}$}{\textit{Ppty}}\\
\tfield{e}{no(restr, scope)}} \\
\hspace*{2em}($\mathfrak{P}$($\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$\Uparrow$x}{\textit{Ind}}}}} . \record{
\tfield{e}{think($r.\mathfrak{s}.\text{x}_0$, \smallrecord{
\smalltfield{e}{fail($r.\mathfrak{s}.\text{x}_0$)}})}}$\urcorner$)))$\urcorner$
\item $\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}}}}}} . \\
\hspace*{1em}($\lambda P$:\textit{Ppty} . \record{
\mfield{restr}{girl$'$}{\textit{Ppty}}\\
\mfield{scope}{$P|_{\mathcal{F}(\text{girl}')}$}{\textit{Ppty}}\\
\tfield{e}{no(restr, scope)}} \\
\hspace*{2em}($\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}} . \smallrecord{
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$r$.x}{\textit{Ind}}}}}}\\
\smalltfield{e}{think($\mathfrak{c}.\mathfrak{s}.\text{x}_0$, \smallrecord{
\smalltfield{e}{fail($\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}})}}$\urcorner$))$\urcorner$
\hfill (purification)
\item $\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}}}}}} . \\
\hspace*{1em}\record{
\mfield{restr}{girl$'$}{\textit{Ppty}}\\
\mfield{scope}{$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{e}{girl(x)}} . \smallrecord{
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{$\mathfrak{s}$}{\smallrecord{
\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$r$.x}{\textit{Ind}}}}}}\\
\smalltfield{e}{think($\mathfrak{c}.\mathfrak{s}.\text{x}_0$, \smallrecord{
\smalltfield{e}{fail($\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}})}}$\urcorner$}{\textit{Ppty}}\\
\tfield{e}{no(restr, scope)}}$\urcorner$\\
\hfill ($\beta$-reduction, property restriction)
\end{subex}
\end{ex}
% Interpreting \textit{no girl} with storage yields \nexteg{}.
% \begin{ex}
% \record{\field{quants}{\{$\ulcorner\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_1$}{\textit{Ind}}}
% . $\lambda P$:\textit{Ppty} . \record{\tfield{e}{no(girl$'$,
% $P$(\smallrecord{\field{x}{$\mathfrak{s}$.x$_1$}}))}}$\urcorner$\}}\\
% \field{core}{$\ulcorner\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_1$}{\textit{Ind}}}
% . $\lambda P$:\textit{Ppty} . $P$(\smallrecord{\smalltfield{x}{$\mathfrak{s}$.x$_1$}})$\urcorner$}}
% \end{ex}
% Then \textit{no girl thinks she failed} yields \nexteg{}.
% \begin{ex}
% \record{\field{quants}{\{$\ulcorner\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_1$}{\textit{Ind}}}
% . $\lambda P$:\textit{Ppty} . \record{\tfield{e}{no(girl$'$,
% $P$(\smallrecord{\field{x}{$\mathfrak{s}$.x$_1$}})$|_{\mathcal{F}(\text{girl}')}$)}}$\urcorner$\}}\\
% \field{core}{$\ulcorner\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_1$}{\textit{Ind}}}
% . \record{\tfield{e}{\textbf{thinks$^\frown$she$^\frown$failed$_{x_0}$}($\mathfrak{s}\oplus$\smallrecord{\field{x$_0$}{$\mathfrak{s}$.x$_1$}})}}$\urcorner$}}
% \end{ex}
% \preveg{} uses the definition of
% \textbf{thinks$^\frown$she$^\frown$failed$_{x_0}$} given in
% (\ref{ex:thinks-she-failed-x0}). Let us call the value of the
% `core'-field in \preveg{}
% \textbf{thinks$^\frown$she$^\frown$failed$_{x_1}$}. Then the result
% of applying retrieval to \preveg{} is \nexteg{}.
% \begin{ex}
% \record{\field{quants}{\{\}}\\
% \field{core}{$\ulcorner\lambda\mathfrak{s}$:\textit{Rec}
% . \smallrecord{\smalltfield{e}{no(girl$'$, $\lambda
% r$:\smallrecord{\smalltfield{x$_1$}{\textit{Ind}}\\
% \smalltfield{e}{girl(x$_1$)}} . \textbf{thinks$^\frown$she$^\frown$failed$_{x_1}$}($\mathfrak{s}\oplus$\smallrecord{\field{x$_1$}{$r$.x$_1$}})})}$\urcorner$}}
% \end{ex}
\paragraph{\textit{A man walked. He whistled.} }
\label{sec:discourse-anaph}
Given our strategy for defining the content of quantified sentences in
terms of generalized quantifiers a witness for the content type of \textit{a man walked}
will be \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}} . \record{
\mfield{restr}{man$'$}{\textit{Ppty}}\\
\mfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\tfield{e}{exist(restr, scope)}}$\urcorner$
\end{ex}
We know from our treatment of the witness conditions associated with
`exist' that \preveg{} is equivalent to \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}} . \\
\hspace*{4em}\record{
\mfield{restr}{man$'$}{\textit{Ppty}}\\
\mfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\tfield{e}{\record{
\tfield{x}{$\mathfrak{T}$($\Uparrow$restr)}\\
\tfield{e}{$\mathfrak{P}$($\Uparrow$scope)\{x\}}}}}$\urcorner$
\label{ex:a-man-walked-derived}
\end{ex}
Using our previous treatment for free pronouns, \textit{he whistled}
will have \nexteg{} as a witness of its content type.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}
.
\record{\tfield{e}{whistle($c.\mathfrak{s}$.x$_0$)}}$\urcorner$
% $\lambda\mathfrak{s}$:\smallrecord{\smalltfield{x$_0$}{\textit{Ind}}} . \record{\tfield{e}{whistle($\mathfrak{s}$.x$_0$)}}
\label{ex:he-whistled-parametric}
\end{ex}
We will represent \preveg{} as \textbf{he$^{\frown}$whistled}.
The utterance of \textit{He whistled} is to be interpreted in the
context of the previous utterance of \textit{a man walked}.
We will achieve this by merging the quasi-fixed point type (see
Chapter~\ref{ch:commonnouns}, p.~\pageref{ex:quasifixedpointtype}) of
the foreground of the parametric content of the previous utterance with the context type
of the current utterance. The quasi-fixed point type for the
foreground of
(\ref{ex:a-man-walked-derived}) is \nexteg{}.
\begin{ex}
\record{
\tfield{$\mathfrak{c}^*$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}\\
\mfield{restr}{man$'$}{\textit{Ppty}}\\
\mfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\tfield{e}{\record{
\tfield{x}{$\mathfrak{T}$($\Uparrow$restr)}\\
\tfield{e}{$\mathfrak{P}$($\Uparrow$scope)\{x\}}}}}
\end{ex}
We will merge this under the label `$\mathfrak{p}$' (``previous'')
into the context type in (\ref{ex:he-whistled-parametric}) yielding \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{p}$}{\smallrecord{
\smalltfield{$\mathfrak{c}^*$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}\\
\smallmfield{restr}{man$'$}{\textit{Ppty}}\\
\smallmfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\smalltfield{e}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$($\Uparrow$restr)}\\
\smalltfield{e}{$\mathfrak{P}$($\Uparrow$scope)\{x\}}}}}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smalltfield{x$_0$}{\textit{Ind}}}}}
. \record{\tfield{e}{whistle($c.\mathfrak{s}$.x$_0$)}}$\urcorner$
\end{ex}
\preveg{} makes the content of the previous utterance be part of the
context for content of the current utterance. It does not, however,
express the anaphoric relation between \textit{he} and \textit{a man}.
In order to do this we need to require that $\mathfrak{s}.\text{x}_0$
in the context is identical with $\mathfrak{p}.\text{e}.\text{s}$.
This can be done by introducing a manifest field under the
`$\mathfrak{s}$'-label as in \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{p}$}{\smallrecord{
\smalltfield{$\mathfrak{c}^*$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}\\
\smallmfield{restr}{man$'$}{\textit{Ppty}}\\
\smallmfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\smalltfield{e}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$($\Uparrow$restr)}\\
\smalltfield{e}{$\mathfrak{P}$($\Uparrow$scope)\{x\}}}}}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$\Uparrow\!\!\mathfrak{p}$.e.x}{\textit{Ind}}}}}
. \record{\tfield{e}{whistle($c.\mathfrak{s}$.x$_0$)}}$\urcorner$
\end{ex}
On the basis of \preveg{}, we can create a new function with the same
effect which will have the same domain and return the same results for
each element in the domain but in which any dependency on
`$c.\mathfrak{s}.\text{x}_0$' is replaced by a dependency on
`$c.\mathfrak{p}.\text{e}.\text{x}$' as in \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{p}$}{\smallrecord{
\smalltfield{$\mathfrak{c}^*$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}\\
\smallmfield{restr}{man$'$}{\textit{Ppty}}\\
\smallmfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\smalltfield{e}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$($\Uparrow$restr)}\\
\smalltfield{e}{$\mathfrak{P}$($\Uparrow$scope)\{x\}}}}}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smallmfield{x$_0$}{$\Uparrow\!\!\mathfrak{p}$.e.x}{\textit{Ind}}}}}
. \record{\tfield{e}{whistle($c.\mathfrak{p}$.e.x)}}$\urcorner$
\end{ex}
Since nothing now depends on the path `$\mathfrak{s}.\text{x}_0$' in
the context and $\mathfrak{T}(\text{man}')$', that is, the type
restriction on the path `$\mathfrak{p}$.e.x', is a subtype of
`\textit{Ind}', the type from which the singleton type on the path
`$\mathfrak{s}.\text{x}_0$' is derived, we can remove the path `$\mathfrak{s}.\text{x}_0$'
without changing the extension of any records that are witnesses for the
context type. Thus we obtain \nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{p}$}{\smallrecord{
\smalltfield{$\mathfrak{c}^*$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}\\
\smalltfield{a}{\textit{PropCntxt}}}}}}\\
\smallmfield{restr}{man$'$}{\textit{Ppty}}\\
\smallmfield{scope}{walk$'|_{\mathcal{F}(\text{restr})}$}{\textit{Ppty}}\\
\smalltfield{e}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$($\Uparrow$restr)}\\
\smalltfield{e}{$\mathfrak{P}$($\Uparrow$scope)\{x\}}}}}}
}
. \record{\tfield{e}{whistle($c.\mathfrak{p}$.e.x)}}$\urcorner$
\end{ex}
\begin{shaded}
\label{pg:path-alignment-types}Suppose that $T$ is a record type and that $\pi_1$ and $\pi_2$ are
paths in $T$. Then we use $T_{\pi_1=\pi_2}$ to represent the type
exactly like $T$ except that $T_{\pi_1=\pi_2}.\pi_1=
(T.\pi_1)_{\pi_2}$, that is, whatever type, $T'$, is at the end of the path
$\pi_1$, is replaced by the singleton type $T'_{\pi_2}$, or if
$T.\pi_1$ is
\begin{quote}
$\langle\lambda v_1\!:\!T_1\ldots \lambda v_n\!:\!T_n\
.\ T'\dep{v_1,\ldots,v_n}, \Pi\rangle$
\end{quote}
then it is replaced by
\begin{quote}
$\langle\lambda v_1\!:\!T_1\ldots \lambda v_n\!:\!T_n\
.\ (T'\dep{v_1,\ldots,v_n})_{\pi_2}, \Pi\rangle$
\end{quote}
We use $T_{\pi_{11}=\pi_{21},\ldots,\pi_{1n}=\pi_{2n}}$ to
represent $(\ldots(T_{\pi_{11}=\pi_{21}})\ldots)_{\pi_{1n}=\pi_{2n}}$.
Suppose that $\varphi_1$ and $\varphi_2$ and parametric contents,
$\pi_{11}\ldots\pi_{1n}\in\mathrm{paths}(\varphi_1.\text{bg})$ and \\
$\pi_{21}\ldots\pi_{2n}\in\mathrm{paths}(\mathcal{F}_{\text{quasi}^*}(\varphi_2.\text{fg})$,
then the \textit{content $\varphi_1$ given $\varphi_2$ with
alignment of $\pi_{11}$ and $\pi_{21}$;\ldots;$\pi_{1n}$ and $\pi_{2n}$},
$\varphi_1|_{\pi_{11},\pi_{21};\ldots;\pi_{1n},\pi_{2n}}\varphi_2$, is
\begin{quote}
\record{
\field{bg}{($\varphi_1$.bg \d{$\wedge$} \smallrecord{
\smalltfield{$\mathfrak{p}$}{$\mathcal{F}_{\text{quasi}^*}(\varphi_2.\text{fg})$}})$_{\pi_{11}=\mathfrak{p}.\pi_{21},\ldots,\pi_{1n}=\mathfrak{p}.\pi_{2n}}$}\\
\field{fg}{$\lambda c$:bg . $\varphi_1(c)$}}
\end{quote}
This gives us a way of combining two parametric contents. Now we need
a way of combining the kinds of parametric content types that we are
using for underspecified interpretation. If $T_1$ and $T_2$ are types
of parametric contents, then there is a combined type,
$\mathfrak{C}(T_1,T_2)$, whose witnesses include witnesses for $T_1$
given a witness for $T_2$ with some possible alignment between the
two. The witnesses of $\mathfrak{C}(T_1,T_2)$ are characterized
recursively by:
\begin{enumerate}
\item if $\varphi:T_1$, then $\varphi:\mathfrak{C}(T_1,T_2)$
\item \begin{tabbing}
if \=$\varphi_1:\mathfrak{C}(T_1,T_2)$,\\
\>$\pi_{11},\ldots,\pi_{1n}\in\mathrm{paths}(\varphi_1.\text{bg})$,\\ \>$\varphi_2:T_2$ and\\
\>$\pi_{21},\ldots,\pi_{2n}\in\mathrm{paths}(\mathcal{F}_{\text{quasi}^*}(\varphi_2.\text{fg}))$,
\end{tabbing}
then
\begin{quote}
$\varphi_1|_{\pi_{11},\pi_{21};\ldots;\pi_{1n},\pi_{2n}}\varphi_2:\mathfrak{C}(T_1,T_2)$
\end{quote}
\end{enumerate}
What we need then for the content type of the utterance is
$\mathfrak{S}(\mathfrak{C}(T_1,T_2))$. We can express this by means
of the action rule in \nexteg{}.
\end{shaded}
\begin{sidewaysfigure}
\begin{ex}
\begin{prooftree}
\hypo{s_{i,A}:_A\text{\smallrecord{
\smalltfield{shared}{\smallrecord{
\smalltfield{latest-utterance}{\smallrecord{
\smalltfield{cont}{\textit{ContType}}}}}}}}}
\hypo{u^*:_A\text{\smallrecord{
\smalltfield{cont}{\textit{ContType}}}}}
\infer[enth]2{s_{i+1,A}:_A\text{\smallrecord{
\smalltfield{shared}{\smallrecord{
\smalltfield{latest-utterance}{\smallrecord{
\smallmfield{cont}{$\mathfrak{S}(\mathfrak{C}(u^*.\text{cont},s_{i,A}.\text{shared}.\text{latest-utterance}.\text{cont}))$}{\textit{ContType}}}}}}}}}
\end{prooftree}
\end{ex}
\end{sidewaysfigure}
% In
% order to obtain the content of the whole discourse, we will embed the
% content of the first sentence below the label `prev' (meaning
% ``previous'') and embed \textbf{he$^{\frown}$whistled} under `e'.
% This is the same technique we used to encode order (and salience) and
% to avoid unwanted label clash in our representation of attitudinal
% states in Chapter~\ref{ch:intensional}. At the same time we need to
% ensure that the resulting content (on the anaphoric reading of the
% pronoun) does not depend on the context and that the `x$_0$' in
% \textbf{he$^{\frown}$whistled} gets bound to the path `e.x' in the
% content of the first sentence. The result we obtain is \nexteg{a}
% which, spelling out the function application in the `e'-field, is
% identical with \nexteg{b}.
% \begin{ex}
% \begin{subex}
% \item $\lambda\mathfrak{s}$:\textit{Rec} .
% \record{\tfield{prev}{\record{\tfield{e}{\record{\tfield{x}{$\mathfrak{T}$(man$'$)}\\
% \tfield{e}{$\mathfrak{P}$(walk$'_{\mathcal{F}(\text{man}')}$)\{x\}}}}}}\\
% \tfield{e}{\textbf{he$^{\frown}$whistled}($\mathfrak{s}\oplus$\smallrecord{\field{x$_0$}{$\Uparrow$prev.e.x}})}}
% \item $\lambda\mathfrak{s}$:\textit{Rec} .
% \record{\tfield{prev}{\record{\tfield{e}{\record{\tfield{x}{$\mathfrak{T}$(man$'$)}\\
% \tfield{e}{$\mathfrak{P}$(walk$'_{\mathcal{F}(\text{man}')}$)\{x\}}}}}}\\
% \tfield{e}{\record{\tfield{e}{whistle($\Uparrow$prev.e.x)}}}}
% \end{subex}
% \end{ex}
% Now we must consider how we would construct general rules that would
% combine the parametric content of the discourse so far with the
% parametric content of a new declarative sentence added to the
% discourse. We will first consider the simple case where no anaphora
% occurs (for example, an interpretation of \textit{A man walked. He
% whistled} here \textit{he} is refers deictically and is not
% anaphorically related to \textit{a man}). We will use
% $\mathcal{T}_{\text{curr}}$ to refer to the current parametric
% content of the discourse so far. (We are making the simplifying
% assumption that the discourse consists of a string of declarative
% sentence utterances.) We will use $\mathcal{T}_{\text{new}}$ to refer
% to the paramtric content of the new (declarative) sentence with which
% we are updating the content of the discourse. We will use
% $\mathcal{T}_{\text{curr}}+\mathcal{T}_{\text{new}}$ to represent the
% result of updating $\mathcal{T}_{\text{curr}}$ with
% $\mathcal{T}_{\text{new}}$. The non-anaphoric update is then defined
% as in \nexteg{}.
% \begin{ex}
% If $\mathcal{T}_{\text{curr}}$ : $(T_1\rightarrow\textit{Type})$ and
% $\mathcal{T}_{\text{new}}$ : $(T_2\rightarrow\textit{Type})$, then
% $\mathcal{T}_{\text{curr}}+\mathcal{T}_{\text{new}}$ is
% \begin{quote}
% $\lambda\mathfrak{s}$:$(T_1$\d{$\wedge$}$[T_2]_{\text{incr}_x(T_1)})$
% . \record{\tfield{prev}{$\mathcal{T}_{\text{curr}}(\mathfrak{s})$}\\
% \tfield{e}{$[\mathcal{T}_{\text{new}}]_{\text{incr}_x(T_1)}(\mathfrak{s})$}}
% \end{quote}
% \end{ex}
% This method of combination is similar to the S-combinator in
% combinatory logic, in that it applies both parametric contents to a
% context, $\mathfrak{s}$. It abstracts over $\mathfrak{s}$ and makes
% sure that it is of an appropriate type to be an argument to both
% parametric contents. Rather than applying the first result of
% application to $\mathfrak{s}$ to the second it
% creates a record type involving both the contents. In addition it
% increments the `x'-labels in the second content so that there will no
% be unintended label clash between the two.
% In the case of making a discourse anaphoric connection two additional things
% have to happen. The pronoun content within $\mathcal{T}_{\text{new}}$
% has to be connected to some path in $\mathcal{T}_{\text{curr}}$ and
% the updated parametric content
% $\mathcal{T}_{\text{curr}}+\mathcal{T}_{\text{new}}$ must be made not
% to depend on the context to determine the pronoun content. We first
% give a definition which will allow one discourse anaphoric connection
% and we will then generalize this to a set of anaphoric connections.
% The definition given in \preveg{} will be a specific case of this
% general definition, where the set of anaphoric connections is empty.
% The case of a single anaphoric connection is given in \nexteg{}.
% \begin{ex}
% If $\mathcal{T}_{\text{curr}}$ : $(T_1\rightarrow\textit{Type})$,
% $\mathcal{T}_{\text{new}}$ : $(T_2\rightarrow\textit{Type})$, for any
% $s:T_1$, $\pi\in\text{paths}(\mathcal{T}_{\text{curr}}(s))$ and
% $[\ell:v]\in[T_2]_{\text{incr}_x(T_1)}$, then
% $\mathcal{T}_{\text{curr}}+_{\pi,\ell}\mathcal{T}_{\text{new}}$ is
% \begin{quote}
% $\lambda\mathfrak{s}$:$(T_1$\d{$\wedge$}$[T_2]_{\text{incr}_x(T_1)}\ominus[\ell,v])$
% . \record{\tfield{prev}{$\mathcal{T}_{\text{curr}}(\mathfrak{s})$}\\
% \tfield{e}{$[\mathcal{T}_{\text{new}}]_{\text{incr}_x(T_1)}(\mathfrak{s}\oplus[\ell=\text{prev}.\pi])$}}
% \end{quote}
% \end{ex}
% Here the dependence of $\mathcal{T}_{\text{new}}$ on $\ell$ is
% discharged locally by requiring that the $\ell$-field contains the
% same as the $\pi$-field from $\mathcal{T}_{\text{curr}}$. The
% dependence on $\ell$ is thus removed from the domain of the function
% representing the parametric content for the whole discourse.
% Now let us consider how we can upgrade \preveg{} to allow for more
% than one pronoun resolution at a time as in an example like \textit{A
% dog chased a cat. She didn't catch him.} In order to facilitate
% this we introduce two new operators, $\ominus_{\text{set}}$ and
% $\oplus_{\text{set}}$, which perform $\ominus$ and $\oplus$
% respectively for each member of a set in their second arguments. Thus
% $\ominus_{\text{set}}$ will subtract a set of fields from a record
% type and $\oplus_{\text{set}}$ will add a set of fields to a record.
% We present the upgraded version of \preveg{} in \nexteg{} where if
% $\pi$ is an ordered pair we use $\pi_1$ and $\pi_2$ to represent the
% first and second members of $\pi$ respectively and if $f$ is a field
% then we use label($f$) to represent the label in the field, that is
% the first member of the ordered pair which is the field.
% \begin{ex}
% If $\mathcal{T}_{\text{curr}}$ : $(T_1\rightarrow\textit{Type})$,
% $\mathcal{T}_{\text{new}}$ : $(T_2\rightarrow\textit{Type})$ and\\
% \hspace*{2em}$\vec{\Pi}\subseteq[T_2]_{\text{incr}_x(T_1)}\times\{\pi\mid$ for any
% $s:T_1$, $\pi\in\text{paths}(\mathcal{T}_{\text{curr}}(s))\}$ such
% that $\vec{\Pi}$ is the graph of a one-one function,\\ then
% $\mathcal{T}_{\text{curr}}+_{\vec{\Pi}}\mathcal{T}_{\text{new}}$ is
% \begin{quote}
% $\lambda\mathfrak{s}$:$(T_1$\d{$\wedge$}$[T_2]_{\text{incr}_x(T_1)})\ominus_{\text{set}}\vec{\Pi}_1$
% .\\ \hspace*{2em} \record{\tfield{prev}{$\mathcal{T}_{\text{curr}}(\mathfrak{s})$}\\
% \tfield{e}{$[\mathcal{T}_{\text{new}}]_{\text{incr}_x(T_1)}(\mathfrak{s}\oplus_{\text{set}}\{[\text{label}(\vec{\pi}_1)=\text{prev}.\vec{\pi}_2]\mid\vec{\pi}\in\vec{\Pi}\})$}}
% \end{quote}
% \end{ex}
% If $\vec{\Pi}$ is
% $\{\langle\langle\ell_1,v_1\rangle,\pi_1\rangle,\ldots,\langle\langle\ell_n,v_n\rangle,\pi_n\rangle\}$
% then for convenience we represent
% $\mathcal{T}_{\text{curr}}+_{\vec{\Pi}}\mathcal{T}_{\text{new}}$ as $\mathcal{T}_{\text{curr}}+_{\ell_1\leadsto\pi_1,\ldots,\ell_n\leadsto\pi_n}\mathcal{T}_{\text{new}}$.
This does not express any of the linguistic constraints concerning
what anaphors can be related to what antecedents. % This will be
% addressed in Section~\ref{sec:struc-cntxt}.
% This does not give us a field which \textit{he} could pick up on to
% obtain the anaphoric reference. However, we can show that the type
% in \nexteg{a} and \nexteg{b} are truth-conditionally equivalent, that is, \nexteg{a}
% has a witness just in case \nexteg{b} has a witness.
% \begin{ex}
% \begin{subex}
% \item exist(man$'$, walk$'$)
% \item \record{\tfield{x}{\textit{Ind}}\\
% \tfield{c}{man(x)}\\
% \tfield{e}{walk(x)}}
% \end{subex}
% \label{ex:amw-drt}
% \end{ex}
% The argument for this goes as follows. By an argument parallel to
% that in (\ref{ex:witnessconds-edr}c) we can show that \nexteg{a} and
% \nexteg{b} are equivalent.
% \begin{ex}
% \begin{subex}
% \item $s$ : exist(man$'$, walk$'$)
% \item $\{a\mid\exists s'[s':\text{man}(a)]\}\cap\{a\mid\exists
% s'[s':\text{man}(a)]\wedge\exists s'[s'\underline{\varepsilon}s\wedge s':\text{walk}(a)]\}\not=\emptyset$
% \end{subex}
% \label{ex:amw-wit}
% \end{ex}
% This entails \nexteg{a} which, because of the arity of `man' and
% `walk', is equivalent to \nexteg{b}.
% \begin{ex}
% \begin{subex}
% \item $\exists a[\exists s'[s':\text{man}(a)]\wedge\exists s'[s':\text{walk}(a)]]$
% \item $\exists a[a:\textit{Ind}\wedge\exists s'[s':\text{man}(a)]\wedge\exists s'[s':\text{walk}(a)]]$
% \end{subex}
% \end{ex}
% If \preveg{b} is true, then it will be possible to construct a witness
% for (\ref{ex:amw-drt}b). On the other hand, if $s$ is of type
% (\ref{ex:amw-drt}b), then (\ref{ex:amw-wit}b) will be true so there
% will be a witness for (\ref{ex:amw-drt}a), for example, $s$ itself.
% Thus if it has been asserted that there is a situation of type
% (\ref{ex:amw-drt}a), it is safe to assume that there is a situation of
% type (\ref{ex:amw-drt}b) (assuming that the assertion was true).
% (\ref{ex:amw-drt}b) gives us a field which can be picked up by anaphora.
\paragraph{\textit{no dog which chases a cat catches it}}
\label{sec:donkey-anaph}
This example is an instance of what is known in the literature as
\textit{donkey anaphora}. For a brief overview with references to a
large linguistic literature see \cite{KingLewis2018}. For good
overviews up to the mid nineties from a linguistic perspective see
\cite{Chierchia1995}, Chapter~2 and \cite{Kanazawa1994}.
Our treatment of donkey anaphora will treat
\textit{it} in \nexteg{a} more like the kind of discourse
anaphora discussed in the previous example rather than
direct binding of a pronoun by a quantifier. In this way it follows
the classic linguistic treatment of donkey anaphora in DRT, first
formulated in \cite{Kamp1981}. Some evidence for this can be taken
from \nexteg{b}, where it is difficult to relate the singular pronoun
\textit{it} to \textit{every cat}, and \nexteg{c} where the plural
pronoun \textit{them} can be related \textit{every cat}. This follows
the pattern of discourse anaphora illustrated in \nexteg{d} and
\nexteg{e}.
\begin{ex}
\begin{subex}
\item no dog which chases a cat catches it
\item no dog which chases every cat catches it
\item no dog which chases every cat catches them
\item Every cat miaowed. It wanted milk.
\item Every cat miaowed. They wanted milk.
\end{subex}
\end{ex}
The key to the treatment of donkey anaphora is a process of local
accommodation of context in a parametric property. Consider a
parametric content for the verb-phrase \textit{catches it} given in
\nexteg{}.
\begin{ex}
$\ulcorner\lambda c$:\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
} .
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}} .
\record{
\tfield{e}{catch$^{\dagger}$($r$.x, $c.\mathfrak{s}.\text{x}_0$)}}$\urcorner\urcorner$
\end{ex}
Local accommodation involves ``moving'' the type of the context into
the domain type of the property under the label `$\mathfrak{c}$' as in
\nexteg{}, adjusting any paths in $c$ addressed in the resulting
function to paths in $r$ beginning with `$\mathfrak{c}$'.
\begin{ex}
$\ulcorner\lambda c$:\textit{Cntxt} .
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
}}} .
\record{
\tfield{e}{catch$^{\dagger}$($r$.x, $r.\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}}$\urcorner\urcorner$
\label{ex:catch-it-localized}
\end{ex}
In general we define a localization operation, $\mathcal{L}$, on
parametric properties characterized in \nexteg{}.
\begin{ex}
If $\mathcal{P}$ is a parametric property of the form
\begin{quote}
$\ulcorner\lambda c\!:\!T_1\ . \ulcorner\lambda r\!:\!T_2\ .\
\varphi\urcorner\urcorner$
\end{quote}
then the \textit{localization of $\mathcal{P}$},
$\mathcal{L}(\mathcal{P})$, is
\begin{quote}
$\ulcorner\lambda c\!:\!\textit{Cntxt}\ .\ \ulcorner\lambda
r\!:\!T_2\text{\d{$\wedge$}\smallrecord{
\smalltfield{$\mathfrak{c}$}{$T_1$}}}\ .\
\varphi_{c.\pi\leadsto r.\mathfrak{c}.\pi}\urcorner\urcorner$
\end{quote}
\label{ex:localization}
\end{ex}
If we use the localized content (\ref{ex:catch-it-localized}) as the
content of the verb phrase, then, after combination with \textit{no
dog which chases a cat}, the scope of the quantifier will become
\nexteg{}.
\begin{ex}
$\ulcorner\lambda r$:\smallrecord{
\smalltfield{x}{\textit{Ind}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\footnotesize{\textit{Cntxt}}\\
\smalltfield{$\mathfrak{s}$}{\smallrecord{
%\footnotesize{\textit{Assgnmnt}}\\
\smalltfield{x$_0$}{\textit{Ind}}}}\\
\smalltfield{$\mathfrak{c}$}{\smallrecord{
\smalltfield{f}{\textit{PropCntxt}}\\
\smalltfield{a}{\textit{PropCntxt}}}}
}}\\
\smalltfield{e$_1$}{dog(x)}\\
\smalltfield{e$_2$}{\smallrecord{
\smalltfield{x}{$\mathfrak{T}$(cat$'$)}\\
\smalltfield{e}{chase$^\dagger$($\Uparrow$x, x)}}}}
.
\record{
\tfield{e}{catch$^{\dagger}$($r$.x, $r.\mathfrak{c}.\mathfrak{s}.\text{x}_0$)}}$\urcorner$
\end{ex}