forked from Broham/suncalcPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuncalc2.py
225 lines (174 loc) · 5.93 KB
/
suncalc2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import math
from datetime import datetime, timedelta
import time
import calendar
PI = math.pi
sin = math.sin
cos = math.cos
tan = math.tan
asin = math.asin
atan = math.atan2
acos = math.acos
rad = PI / 180.0
e = rad * 23.4397 # obliquity of the Earth
dayMs = 1000 * 60 * 60 * 24
J1970 = 2440588
J2000 = 2451545
J0 = 0.0009
times = [
[-0.833, 'sunrise', 'sunset' ],
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
[ -6, 'dawn', 'dusk' ],
[ -12, 'nauticalDawn', 'nauticalDusk'],
[ -18, 'nightEnd', 'night' ],
[ 6, 'goldenHourEnd', 'goldenHour' ]
]
def rightAscension(l, b):
return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l))
def declination(l, b):
return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l))
def azimuth(H, phi, dec):
return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi))
def altitude(H, phi, dec):
return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H))
def siderealTime(d, lw):
return rad * (280.16 + 360.9856235 * d) - lw
def toJulian(date):
return (time.mktime(date.timetuple()) * 1000) / dayMs - 0.5 + J1970
def fromJulian(j):
return datetime.fromtimestamp(((j + 0.5 - J1970) * dayMs)/1000.0)
def toDays(date):
return toJulian(date) - J2000
def julianCycle(d, lw):
return round(d - J0 - lw / (2 * PI))
def approxTransit(Ht, lw, n):
return J0 + (Ht + lw) / (2 * PI) + n
def solarTransitJ(ds, M, L):
return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L)
def hourAngle(h, phi, d):
try:
ret = acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d)))
return ret
except ValueError as e:
print(h, phi, d)
print(e)
def solarMeanAnomaly(d):
return rad * (357.5291 + 0.98560028 * d)
def eclipticLongitude(M):
C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)) # equation of center
P = rad * 102.9372 # perihelion of the Earth
return M + C + P + PI
def sunCoords(d):
M = solarMeanAnomaly(d)
L = eclipticLongitude(M)
return dict(dec= declination(L, 0),ra= rightAscension(L, 0))
def getSetJ(h, lw, phi, dec, n, M, L):
w = hourAngle(h, phi, dec)
a = approxTransit(w, lw, n)
return solarTransitJ(a, M, L)
# geocentric ecliptic coordinates of the moon
def moonCoords(d):
L = rad * (218.316 + 13.176396 * d)
M = rad * (134.963 + 13.064993 * d)
F = rad * (93.272 + 13.229350 * d)
l = L + rad * 6.289 * sin(M)
b = rad * 5.128 * sin(F)
dt = 385001 - 20905 * cos(M)
return dict(ra=rightAscension(l, b), dec=declination(l, b), dist= dt)
def getMoonIllumination(date):
d = toDays(date)
s = sunCoords(d)
m = moonCoords(d)
# distance from Earth to Sun in km
sdist = 149598000
phi = acos(sin(s["dec"]) * sin(m["dec"]) + cos(s["dec"]) * cos(m["dec"]) * cos(s["ra"] - m["ra"]))
inc = atan(sdist * sin(phi), m["dist"] - sdist * cos(phi))
angle = atan(cos(s["dec"]) * sin(s["ra"] - m["ra"]), sin(s["dec"]) * cos(m["dec"]) - cos(s["dec"]) * sin(m["dec"]) * cos(s["ra"] - m["ra"]))
return dict(fraction=(1 + cos(inc)) / 2, phase= 0.5 + 0.5 * inc * (-1 if angle < 0 else 1) / PI, angle= angle)
def getSunrise(date, lat, lng):
ret = getTimes(date, lat, lng)
return ret["sunrise"]
def getTimes(date, lat, lng):
lw = rad * -lng
phi = rad * lat
d = toDays(date)
n = julianCycle(d, lw)
ds = approxTransit(0, lw, n)
M = solarMeanAnomaly(ds)
L = eclipticLongitude(M)
dec = declination(L, 0)
Jnoon = solarTransitJ(ds, M, L)
result = dict()
for i in range(0, len(times)):
time = times[i]
Jset = getSetJ(time[0] * rad, lw, phi, dec, n, M, L);
Jrise = Jnoon - (Jset - Jnoon);
result[time[1]] = fromJulian(Jrise).strftime('%Y-%m-%d %H:%M:%S')
result[time[2]] = fromJulian(Jset).strftime('%Y-%m-%d %H:%M:%S')
return result
def hoursLater(date, h):
return date + + timedelta(hours=h)
def getMoonTimes(date, lat, lng):
t = date.replace(hour=0,minute=0,second=0)
hc = 0.133 * rad
pos = getMoonPosition(t, lat, lng)
h0 = pos["altitude"] - hc
rise = 0
sett = 0
# go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
for i in range(1,25,2):
h1 = getMoonPosition(hoursLater(t, i), lat, lng)["altitude"] - hc
h2 = getMoonPosition(hoursLater(t, i + 1), lat, lng)["altitude"] - hc
a = (h0 + h2) / 2 - h1
b = (h2 - h0) / 2
xe = -b / (2 * a)
ye = (a * xe + b) * xe + h1
d = b * b - 4 * a * h1
roots = 0
if d >= 0:
dx = math.sqrt(d) / (abs(a) * 2)
x1 = xe - dx
x2 = xe + dx
if abs(x1) <= 1:
roots += 1
if abs(x2) <= 1:
roots += 1
if x1 < -1:
x1 = x2
if roots == 1:
if h0 < 0:
rise = i + x1
else:
sett = i + x1
elif roots == 2:
rise = i + (x2 if ye < 0 else x1)
sett = i + (x1 if ye < 0 else x2)
if (rise and sett):
break
h0 = h2
result = dict()
if (rise):
result["rise"] = hoursLater(t, rise)
if (sett):
result["set"] = hoursLater(t, sett)
if (not rise and not sett):
value = 'alwaysUp' if ye > 0 else 'alwaysDown'
result[value] = True
return result
def getMoonPosition(date, lat, lng):
lw = rad * -lng
phi = rad * lat
d = toDays(date)
c = moonCoords(d)
H = siderealTime(d, lw) - c["ra"]
h = altitude(H, phi, c["dec"])
# altitude correction for refraction
h = h + rad * 0.017 / tan(h + rad * 10.26 / (h + rad * 5.10))
return dict(azimuth=azimuth(H, phi, c["dec"]),altitude=h,distance=c["dist"])
def getPosition(date, lat, lng):
lw = rad * -lng
phi = rad * lat
d = toDays(date)
c = sunCoords(d)
H = siderealTime(d, lw) - c["ra"]
return dict(azimuth=azimuth(H, phi, c["dec"]), altitude=altitude(H, phi, c["dec"]))