-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathaco_tsp.py
174 lines (159 loc) · 7.97 KB
/
aco_tsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import math
import random
from matplotlib import pyplot as plt
class SolveTSPUsingACO:
class Edge:
def __init__(self, a, b, weight, initial_pheromone):
self.a = a
self.b = b
self.weight = weight
self.pheromone = initial_pheromone
class Ant:
def __init__(self, alpha, beta, num_nodes, edges):
self.alpha = alpha
self.beta = beta
self.num_nodes = num_nodes
self.edges = edges
self.tour = None
self.distance = 0.0
def _select_node(self):
roulette_wheel = 0.0
unvisited_nodes = [node for node in range(self.num_nodes) if node not in self.tour]
heuristic_total = 0.0
for unvisited_node in unvisited_nodes:
heuristic_total += self.edges[self.tour[-1]][unvisited_node].weight
for unvisited_node in unvisited_nodes:
roulette_wheel += pow(self.edges[self.tour[-1]][unvisited_node].pheromone, self.alpha) * \
pow((heuristic_total / self.edges[self.tour[-1]][unvisited_node].weight), self.beta)
random_value = random.uniform(0.0, roulette_wheel)
wheel_position = 0.0
for unvisited_node in unvisited_nodes:
wheel_position += pow(self.edges[self.tour[-1]][unvisited_node].pheromone, self.alpha) * \
pow((heuristic_total / self.edges[self.tour[-1]][unvisited_node].weight), self.beta)
if wheel_position >= random_value:
return unvisited_node
def find_tour(self):
self.tour = [random.randint(0, self.num_nodes - 1)]
while len(self.tour) < self.num_nodes:
self.tour.append(self._select_node())
return self.tour
def get_distance(self):
self.distance = 0.0
for i in range(self.num_nodes):
self.distance += self.edges[self.tour[i]][self.tour[(i + 1) % self.num_nodes]].weight
return self.distance
def __init__(self, mode='ACS', colony_size=10, elitist_weight=1.0, min_scaling_factor=0.001, alpha=1.0, beta=3.0,
rho=0.1, pheromone_deposit_weight=1.0, initial_pheromone=1.0, steps=100, nodes=None, labels=None):
self.mode = mode
self.colony_size = colony_size
self.elitist_weight = elitist_weight
self.min_scaling_factor = min_scaling_factor
self.rho = rho
self.pheromone_deposit_weight = pheromone_deposit_weight
self.steps = steps
self.num_nodes = len(nodes)
self.nodes = nodes
if labels is not None:
self.labels = labels
else:
self.labels = range(1, self.num_nodes + 1)
self.edges = [[None] * self.num_nodes for _ in range(self.num_nodes)]
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
self.edges[i][j] = self.edges[j][i] = self.Edge(i, j, math.sqrt(
pow(self.nodes[i][0] - self.nodes[j][0], 2.0) + pow(self.nodes[i][1] - self.nodes[j][1], 2.0)),
initial_pheromone)
self.ants = [self.Ant(alpha, beta, self.num_nodes, self.edges) for _ in range(self.colony_size)]
self.global_best_tour = None
self.global_best_distance = float("inf")
def _add_pheromone(self, tour, distance, weight=1.0):
pheromone_to_add = self.pheromone_deposit_weight / distance
for i in range(self.num_nodes):
self.edges[tour[i]][tour[(i + 1) % self.num_nodes]].pheromone += weight * pheromone_to_add
def _acs(self):
for step in range(self.steps):
for ant in self.ants:
self._add_pheromone(ant.find_tour(), ant.get_distance())
if ant.distance < self.global_best_distance:
self.global_best_tour = ant.tour
self.global_best_distance = ant.distance
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
self.edges[i][j].pheromone *= (1.0 - self.rho)
def _elitist(self):
for step in range(self.steps):
for ant in self.ants:
self._add_pheromone(ant.find_tour(), ant.get_distance())
if ant.distance < self.global_best_distance:
self.global_best_tour = ant.tour
self.global_best_distance = ant.distance
self._add_pheromone(self.global_best_tour, self.global_best_distance, weight=self.elitist_weight)
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
self.edges[i][j].pheromone *= (1.0 - self.rho)
def _max_min(self):
for step in range(self.steps):
iteration_best_tour = None
iteration_best_distance = float("inf")
for ant in self.ants:
ant.find_tour()
if ant.get_distance() < iteration_best_distance:
iteration_best_tour = ant.tour
iteration_best_distance = ant.distance
if float(step + 1) / float(self.steps) <= 0.75:
self._add_pheromone(iteration_best_tour, iteration_best_distance)
max_pheromone = self.pheromone_deposit_weight / iteration_best_distance
else:
if iteration_best_distance < self.global_best_distance:
self.global_best_tour = iteration_best_tour
self.global_best_distance = iteration_best_distance
self._add_pheromone(self.global_best_tour, self.global_best_distance)
max_pheromone = self.pheromone_deposit_weight / self.global_best_distance
min_pheromone = max_pheromone * self.min_scaling_factor
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
self.edges[i][j].pheromone *= (1.0 - self.rho)
if self.edges[i][j].pheromone > max_pheromone:
self.edges[i][j].pheromone = max_pheromone
elif self.edges[i][j].pheromone < min_pheromone:
self.edges[i][j].pheromone = min_pheromone
def run(self):
print('Started : {0}'.format(self.mode))
if self.mode == 'ACS':
self._acs()
elif self.mode == 'Elitist':
self._elitist()
else:
self._max_min()
print('Ended : {0}'.format(self.mode))
print('Sequence : <- {0} ->'.format(' - '.join(str(self.labels[i]) for i in self.global_best_tour)))
print('Total distance travelled to complete the tour : {0}\n'.format(round(self.global_best_distance, 2)))
def plot(self, line_width=1, point_radius=math.sqrt(2.0), annotation_size=8, dpi=120, save=True, name=None):
x = [self.nodes[i][0] for i in self.global_best_tour]
x.append(x[0])
y = [self.nodes[i][1] for i in self.global_best_tour]
y.append(y[0])
plt.plot(x, y, linewidth=line_width)
plt.scatter(x, y, s=math.pi * (point_radius ** 2.0))
plt.title(self.mode)
for i in self.global_best_tour:
plt.annotate(self.labels[i], self.nodes[i], size=annotation_size)
if save:
if name is None:
name = '{0}.png'.format(self.mode)
plt.savefig(name, dpi=dpi)
plt.show()
plt.gcf().clear()
if __name__ == '__main__':
_colony_size = 5
_steps = 50
_nodes = [(random.uniform(-400, 400), random.uniform(-400, 400)) for _ in range(0, 15)]
acs = SolveTSPUsingACO(mode='ACS', colony_size=_colony_size, steps=_steps, nodes=_nodes)
acs.run()
acs.plot()
elitist = SolveTSPUsingACO(mode='Elitist', colony_size=_colony_size, steps=_steps, nodes=_nodes)
elitist.run()
elitist.plot()
max_min = SolveTSPUsingACO(mode='MaxMin', colony_size=_colony_size, steps=_steps, nodes=_nodes)
max_min.run()
max_min.plot()