-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathperceptron.py
96 lines (77 loc) · 3.29 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# -----------------------------------------------------------------------------
# Copyright 2019 (C) Nicolas P. Rougier
# Released under a BSD two-clauses license
#
# References: Rosenblatt, Frank (1958), "The Perceptron: A Probabilistic Model
# for Information Storage and Organization in the Brain", Cornell
# Aeronautical Laboratory, Psychological Review, v65, No. 6,
# pp. 386–408. DOI:10.1037/h0042519
# -----------------------------------------------------------------------------
import numpy as np
class Perceptron:
def __init__(self, n, m):
''' Initialization of the perceptron with given sizes. '''
self.input = np.ones(n+1)
self.output = np.ones(m)
self.weights= np.zeros((m,n+1))
self.reset()
def reset(self):
''' Reset weights '''
Z = np.random.random(self.weights.shape)
self.weights[...] = (2*Z-1)*.25
def propagate_forward(self, data):
''' Propagate data from input layer to output layer. '''
# Set input layer (but not bias)
self.input[1:] = data
self.output[...] = np.dot(self.weights,self.input) > 0
# Return output
return self.output
def propagate_backward(self, target, lrate=0.1):
''' Back propagate error related to target using lrate. '''
error = np.atleast_2d(target-self.output)
input = np.atleast_2d(self.input)
self.weights += lrate*np.dot(error.T,input)
# Return error
return (error**2).sum()
# -----------------------------------------------------------------------------
if __name__ == '__main__':
def learn(network,samples, epochs=250, lrate=.1, momentum=0.1):
# Train
for i in range(epochs):
n = np.random.randint(samples.size)
network.propagate_forward( samples['input'][n] )
network.propagate_backward( samples['output'][n], lrate )
# Test
for i in range(samples.size):
o = network.propagate_forward( samples['input'][i] )
print(i, samples['input'][i], '%.2f' % o[0],
'(expected %.2f)' % samples['output'][i])
network = Perceptron(2,1)
samples = np.zeros(4, dtype=[('input', float, 2), ('output', float, 1)])
# Example 1 : OR logical function
# -------------------------------------------------------------------------
print("Learning the OR logical function")
network.reset()
samples[0] = (0,0), 0
samples[1] = (1,0), 1
samples[2] = (0,1), 1
samples[3] = (1,1), 1
learn(network, samples)
# Example 2 : AND logical function
# -------------------------------------------------------------------------
print("Learning the AND logical function")
network.reset()
samples[0] = (0,0), 0
samples[1] = (1,0), 0
samples[2] = (0,1), 0
samples[3] = (1,1), 1
learn(network, samples)
# Example 3 : XOR logical function
# -------------------------------------------------------------------------
print("Failed at learning the XOR logical function")
network.reset()
samples[0] = (0,0), 0
samples[1] = (1,0), 1
samples[2] = (0,1), 1
samples[3] = (1,1), 0
learn(network, samples)