-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathsrn.py
128 lines (95 loc) · 4.17 KB
/
srn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -----------------------------------------------------------------------------
# Copyright 2019 (C) Nicolas P. Rougier
# Released under a BSD two-clauses license
#
# References: Elman, Jeffrey L. (1990). Finding structure in time. Cognitive
# Science, 14:179–211.
# -----------------------------------------------------------------------------
import numpy as np
def sigmoid(x):
''' Sigmoid like function using tanh '''
return np.tanh(x)
def dsigmoid(x):
''' Derivative of sigmoid above '''
return 1.0-x**2
class Elman:
''' Elamn network '''
def __init__(self, *args):
''' Initialization of the perceptron with given sizes. '''
self.shape = args
n = len(args)
# Build layers
self.layers = []
# Input layer (+1 unit for bias
# +size of first hidden layer)
self.layers.append(np.ones(self.shape[0]+1+self.shape[1]))
# Hidden layer(s) + output layer
for i in range(1,n):
self.layers.append(np.ones(self.shape[i]))
# Build weights matrix
self.weights = []
for i in range(n-1):
self.weights.append(np.zeros((self.layers[i].size,
self.layers[i+1].size)))
# dw will hold last change in weights (for momentum)
self.dw = [0,]*len(self.weights)
# Reset weights
self.reset()
def reset(self):
''' Reset weights '''
for i in range(len(self.weights)):
Z = np.random.random((self.layers[i].size,self.layers[i+1].size))
self.weights[i][...] = (2*Z-1)*0.25
def propagate_forward(self, data):
''' Propagate data from input layer to output layer. '''
# Set input layer with data
self.layers[0][:self.shape[0]] = data
# and first hidden layer
self.layers[0][self.shape[0]:-1] = self.layers[1]
# Propagate from layer 0 to layer n-1 using sigmoid as activation function
for i in range(1,len(self.shape)):
# Propagate activity
self.layers[i][...] = sigmoid(np.dot(self.layers[i-1],self.weights[i-1]))
# Return output
return self.layers[-1]
def propagate_backward(self, target, lrate=0.1, momentum=0.1):
''' Back propagate error related to target using lrate. '''
deltas = []
# Compute error on output layer
error = target - self.layers[-1]
delta = error*dsigmoid(self.layers[-1])
deltas.append(delta)
# Compute error on hidden layers
for i in range(len(self.shape)-2,0,-1):
delta = np.dot(deltas[0],self.weights[i].T)*dsigmoid(self.layers[i])
deltas.insert(0,delta)
# Update weights
for i in range(len(self.weights)):
layer = np.atleast_2d(self.layers[i])
delta = np.atleast_2d(deltas[i])
dw = np.dot(layer.T,delta)
self.weights[i] += lrate*dw + momentum*self.dw[i]
self.dw[i] = dw
# Return error
return (error**2).sum()
# -----------------------------------------------------------------------------
if __name__ == '__main__':
# Example 1: learning a simple time serie
# -------------------------------------------------------------------------
network = Elman(4,8,4)
samples = np.zeros(6, dtype=[('input', float, 4), ('output', float, 4)])
samples[0] = (1,0,0,0), (0,1,0,0)
samples[1] = (0,1,0,0), (0,0,1,0)
samples[2] = (0,0,1,0), (0,0,0,1)
samples[3] = (0,0,0,1), (0,0,1,0)
samples[4] = (0,0,1,0), (0,1,0,0)
samples[5] = (0,1,0,0), (1,0,0,0)
for i in range(5000):
n = i%samples.size
network.propagate_forward(samples['input'][n])
network.propagate_backward(samples['output'][n])
for i in range(samples.size):
o = network.propagate_forward( samples['input'][i] )
print('Sample %d: %s -> %s' % (i, samples['input'][i], samples['output'][i]))
print(' Network output: %s' % (o == o.max()).astype(float))
print()