forked from herohuyongtao/deeptag-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeeptag_model_setting.py
90 lines (67 loc) · 2.68 KB
/
deeptag_model_setting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from network.decoder_net import DecoderNet as decoder
from network.detector_net import DetectorNet as detector
import torch
import os
# import time
def load_deeptag_models(tag_family, device = None):
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
TAG_TYPE = 1
if tag_family == 'aruco' or tag_family == 'apriltag' or tag_family == 'artookkitplus':
TAG_TYPE = 1
elif tag_family == 'topotag':
TAG_TYPE = 0
elif tag_family == 'apriltagxo' or tag_family == 'apriltagxa' :
TAG_TYPE = 3
elif tag_family == 'runetag':
TAG_TYPE = 4
checkpoint_dir = 'models'
checkpoint_dir_2stg = 'models'
num_classes_keypoints =2
if TAG_TYPE ==0:
# model param
model_filename = 'topotag_roi_detector.pth'
model_filename_2stg = 'topotag_decoder.pth'
tag_type='topotag'
# grid_size_cand_list= [3,4,5]
grid_size_cand_list= [4]
num_classes = 4
elif TAG_TYPE ==1:
# model param
model_filename = 'arucotag_roi_detector.pth'
model_filename_2stg = 'arucotag_decoder.pth'
tag_type='arucotag'
grid_size_cand_list= [4,5,6,7]
# grid_size_cand_list= [6]
num_classes = 3
elif TAG_TYPE ==3:
# model param
model_filename = 'arucotag_xab_roi_detector.pth'
model_filename_2stg = 'arucotag_xab_decoder.pth'
tag_type='arucotag'
# grid_size_cand_list= [4,5,6,7]
grid_size_cand_list= [6]
num_classes = 3
elif TAG_TYPE ==4:
# model param
model_filename = 'runetag_roi_detector.pth'
model_filename_2stg = 'runetag_decoder_512x.pth'
tag_type='runetag'
grid_size_cand_list= []
num_classes = 3
num_classes_keypoints = 3
print('===========> loading model <===========')
num_masks = 2
num_channels = 128
num_channels_refiner = 32
model_detector = detector(num_channels=num_channels, num_masks=num_masks, num_classes = 2, num_classes_keypoints = num_classes_keypoints)
state_dict = torch.load(os.path.join(checkpoint_dir, model_filename), map_location=device)
model_detector.load_state_dict(state_dict)
model_detector.to(device)
#print(model_detector)
model_decoder = decoder(num_channels=num_channels_refiner, num_masks=num_masks, num_classes = num_classes)
state_dict_2stg = torch.load(os.path.join(checkpoint_dir_2stg, model_filename_2stg), map_location=device)
model_decoder.load_state_dict(state_dict_2stg)
model_decoder.to(device)
#print(model_decoder)
return model_detector, model_decoder, device, tag_type, grid_size_cand_list