forked from jvelazquez-reyes/rrsg2020-stats-dashboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathallStats.R
217 lines (184 loc) · 8.84 KB
/
allStats.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
##Call Python script from R##
#Disable prompt to install miniconda
#Sys.setenv(RETICULATE_PYTHON = "../my_env/bin/python")
#reticulate::source_python(paste(getwd(),"/nist.py", sep = ""))
#Source nist.R temperature_correction tool
source("nist.R")
##PHANTOM DATASET##
data <- read.csv("3T_NIST_T1maps_database.csv")
data[] <- gsub("[][]", "", as.matrix(data))
colnames(data)[1] <- gsub('^...','',colnames(data)[1])
submission <- 1:38
listSpheres = list()
list2append = list()
for (i in submission){
for (j in seq(1,14)){
dataSphere = gsub("\\. ","",data[i,j+grep("^T1...NIST.sphere.1$", colnames(data))-1])
dataSphere = as.matrix(as.numeric(unlist(strsplit(dataSphere," "))))
dataSphere = dataSphere[!is.na(dataSphere)]
list2append[[j]] = dataSphere
}
listSpheres[[i]] = list2append
}
##COMPARE MAGNITUDE VS COMPLEX##
source("comparison_magnitude_complex.R")
cases <- c(1,seq(11,25,2),32,34)
#p-value > 0.5, there's no statistical difference between magnitude and complex
magVScomp <- comparison_magnitude_complex(cases)
#Germany <- 13:26
#Montreal <- c(4,11,12,27:30,38)
#US <- c(3,5:10,32:37)
#London <- 1:2
#Australia <- 31
#id = data[scans[j],"id"]
##LOADING NIST_whitelists##
whitelist <- fromJSON(file = "NIST_whitelists.json")
##FILTER PER SITE
allLondon <- c(1.001,1.002)
allUS <- c(2.001,4.001,4.002,4.003,4.004,4.005,4.006,10.001,10.002,10.003,10.004,11.001,11.002)
allMontreal <- c(3.001,5.001,5.002,7.001,7.002,8.001,8.002,12.001)
allGermany <- c(6.001,6.002,6.003,6.004,6.005,6.006,6.007,6.008,6.009,6.010,6.011,6.012,6.013,6.014)
allAustralia <- c(9.001)
filteredSites <- whitelist$whitelists$`one measurement per scanner`$whitelist
London <- intersect(filteredSites,allLondon)
US <- intersect(filteredSites,allUS)
Montreal <- intersect(filteredSites,allMontreal)
Germany <- intersect(filteredSites,allGermany)
Australia <- intersect(filteredSites,allAustralia)
labelSidSite <- matrix(0L, nrow = length(filteredSites), ncol = 2)
for (ii in seq(1,length(filteredSites))){
if(filteredSites[ii] %in% London){labelSidSite[ii,1] = filteredSites[ii]
labelSidSite[ii,2] = paste(filteredSites[ii],"London")}
if(filteredSites[ii] %in% US){labelSidSite[ii,1] = filteredSites[ii]
labelSidSite[ii,2] = paste(filteredSites[ii],"US")}
if(filteredSites[ii] %in% Montreal){labelSidSite[ii,1] = filteredSites[ii]
labelSidSite[ii,2] = paste(filteredSites[ii],"Montreal")}
if(filteredSites[ii] %in% Germany){labelSidSite[ii,1] = filteredSites[ii]
labelSidSite[ii,2] = paste(filteredSites[ii],"Germany")}
if(filteredSites[ii] %in% Australia){labelSidSite[ii,1] = filteredSites[ii]
labelSidSite[ii,2] = paste(filteredSites[ii],"Australia")}
}
##FILTER PER MRI VENDOR##
allSiemens <- c(1.001,1.002,2.001,3.001,8.001,8.002,9.001,11.001,11.002,12.001)
allGE <- c(4.001,4.002,4.003,4.004,4.005,4.006,10.001,10.002,10.003,10.004)
allPhilips <- c(5.001,5.002,6.001,6.002,6.003,6.004,6.005,6.006,6.007,6.008,6.009,6.010,6.011,
6.012,6.013,6.014,7.001,7.002)
Siemens <- intersect(filteredSites,allSiemens)
GE <- intersect(filteredSites,allGE)
Philips <- intersect(filteredSites,allPhilips)
labelSidVendor <- matrix(0L, nrow = length(filteredSites), ncol = 2)
for (ii in seq(1,length(filteredSites))){
if(filteredSites[ii] %in% Siemens){labelSidVendor[ii,1] = filteredSites[ii]
labelSidVendor[ii,2] = paste(filteredSites[ii],"Siemens")}
if(filteredSites[ii] %in% GE){labelSidVendor[ii,1] = filteredSites[ii]
labelSidVendor[ii,2] = paste(filteredSites[ii],"GE")}
if(filteredSites[ii] %in% Philips){labelSidVendor[ii,1] = filteredSites[ii]
labelSidVendor[ii,2] = paste(filteredSites[ii],"Philips")}
}
##ANALYSIS WITHIN GROUPS ACROSS SITES
source("comparison_across_sites.R")
MeasSites <- comparison_across_sites(filteredSites)
SiteGermany <- comparison_across_sites(Germany)
SiteMontreal <- comparison_across_sites(Montreal)
SiteUS <- comparison_across_sites(US)
SiteLondon <- suppressWarnings(comparison_across_sites(London))
SiteAustralia <- suppressWarnings(comparison_across_sites(Australia))
##COMPARISON BETWEEN MEASURED AND REFERENCE T1 VALUES##
source("measuredT1_against_referenceT1.R")
#scans <- 1:4
RefVSMeas <- measuredT1_against_referenceT1(filteredSites)
sdFilteredSites <- measuredT1_against_referenceT1(filteredSites)
sdMontreal <- measuredT1_against_referenceT1(Montreal)
sdGermany <- measuredT1_against_referenceT1(Germany)
##HIERARCHICAL_SHIFT_FUNCTION##
source("hierarchical_shift_function.R")
dataSites <- MeasSites$dataSite_long
if(!exists("HSFData")){
HSFData <- hierarchical_shift_function(dataSites)
} else {
load("./res/HSF.RData")
}
##HUMAN DATASET##
data2 <- read.csv("3T_human_T1maps_database.csv")
data2[] <- gsub("[][]", "", as.matrix(data2))
submissionHuman <- 1:56
listHuman = list()
list2appendHuman = list()
for (i in submissionHuman){
for (j in seq(1,4)){
dataHuman = gsub("\\. ","",data2[i,j+grep("^T1...genu..WM.$", colnames(data2))-1])
dataHuman = as.matrix(as.numeric(unlist(strsplit(dataHuman," "))))
dataHuman = dataHuman[!is.na(dataHuman)]
list2appendHuman[[j]] = dataHuman
}
listHuman[[i]] = list2appendHuman
}
##UNAM##
dataHumanAll <- c(1:56)
dataHumanMexico <- c(18:55)
dataHumanCanada <- c(8,56)
dataHumanUS <- c(1:7,9)
dataHumanItaly <- c(10:14)
dataHumanGermany <- c(16,17)
dataHumanAustralia <- 15
source("getHumanData.R")
sitesHuman <- getHumanData(dataHumanAll)
sitesHuman_Mexico <- getHumanData(dataHumanMexico)
sitesHuman_Canada <- getHumanData(dataHumanCanada)
sitesHuman_US <- getHumanData(dataHumanUS)
sitesHuman_Italy <- getHumanData(dataHumanItaly)
sitesHuman_Germany <- getHumanData(dataHumanGermany)
sitesHuman_Australia <- getHumanData(dataHumanAustralia)
listHumanData <- c(sitesHuman_Canada,sitesHuman_US,sitesHuman_Italy,sitesHuman_Germany,sitesHuman_Australia)
labelHumanSite <- c("CAN-MEX","US-MEX","ITA-MEX","GER-MEX","AUS-MEX")
labelHumanROI <- c("Genu WM","splenium WM","Deep GM","Cortical GM")
for (ii in seq(1,length(listHumanData))){
cnt_roi = 1
rois = 1:4
for (jj in labelHumanROI){
refMEX = mean(subset(sitesHuman_Mexico$dataLong_human, roi_long==jj)$siteData)
curSite = mean(subset(listHumanData[ii]$dataLong_human, roi_long==jj)$siteData)
dfmeanHuman2 = data.frame(labelHumanSite[ii],cnt_roi,jj,100*(curSite-refMEX)/refMEX)
if (ii==1 && cnt_roi==1){
dfmeanHuman = dfmeanHuman2
}
else{
dfmeanHuman = rbind(dfmeanHuman,dfmeanHuman2)
}
cnt_roi = cnt_roi + 1
}
}
colnames(dfmeanHuman) <- c('Site','roi_num','roi_lab','dif')
##COMPARISON OF NIST PHANTOM AND HUMAN DATASETS##
indNISTphantom <- c(3,4,5:10,25,26,28,31)
a = match(indNISTphantom,data2[,"id"])
indHUMANdata <- c(9,8,2:7,16,17,56,15)
#Sites who submitted both, NIST phantom and human data
dualSub_Sites_np = c('Biomedical Engineering, Case Western Reserve University - 2.001',
'McGill University Health Centre - Montreal General Hospital - 3.001',
'Keck Medical Center of University of Southern California GE 1 - 4.001',
'Keck Medical Center of University of Southern California GE 2 - 4.002',
'Keck Medical Center of University of Southern California GE 1 - 4.003',
'Keck Medical Center of University of Southern California GE 1 - 4.004',
'Keck Medical Center of University of Southern California GE 2 - 4.005',
'Keck Medical Center of University of Southern California GE 2 - 4.006',
'Philips Research Hamburg - 6.013',
'Philips Research Hamburg - 6.014',
'McGill University Health Centre - Glen Site - Cedars - 7.002',
'Liverpool Hospital Australia - 9.001')
dualSub_Sites_h = c('Biomedical Engineering, Case Western Reserve University - 4.001',
'McGill University Health Centre - Montreal General Hospital - 3.001',
'Keck Medical Center of University of Southern California GE 1 - 2.001',
'Keck Medical Center of University of Southern California GE 2 - 2.002',
'Keck Medical Center of University of Southern California GE 1 - 2.003',
'Keck Medical Center of University of Southern California GE 1 - 2.004',
'Keck Medical Center of University of Southern California GE 2 - 2.005',
'Keck Medical Center of University of Southern California GE 2 - 2.006',
'Philips Research Hamburg - 8.001',
'Philips Research Hamburg - 8.002',
'McGill University Health Centre - Glen Site - Cedars - 10.001',
'Liverpool Hospital Australia - 7.001')
source("comparison_NISTHuman_nist.R")
compNISTHuman_nist <- comparison_NISTHuman_nist(indNISTphantom,dualSub_Sites_np)
compNISTHuman_human <- comparison_NISThuman_human(indHUMANdata,dualSub_Sites_h)
compNISTHuman <- rbind(compNISTHuman_nist$data_NIST,compNISTHuman_human$data_human)