-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathstats.py
141 lines (109 loc) · 3.96 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/python
# -*- coding: utf-8 -*-
""" The stats mdoule contains two objects for tracking distributions.
The MeanVarStat keeps a running total of frequence, mean, and variance of
a random variable.
DiffStat supports finding the difference between two MeanVarStat objects.
"""
import math
import primitive_util
import mergeable
class MeanVarStat(primitive_util.PrimitiveConversion,
mergeable.MergeableObject):
__slots__ = ('freq', 'sum', 'sum_sq', 'pfreq', 'psum', 'psum_sq')
def __init__(self, prior_freq=2.0, prior_sum=2.0, prior_sum_sq=4.0):
self.freq = prior_freq
self.sum = prior_sum
self.sum_sq = prior_sum_sq
self.pfreq = prior_freq
self.psum = prior_sum
self.psum_sq = prior_sum_sq
def add_outcome(self, val):
self.freq += 1
self.sum += val
self.sum_sq += val * val
def real_frequency(self):
return self.freq - self.pfreq
def frequency(self):
return self.freq
def mean(self):
return self.sum / self.freq
def variance(self):
if self.freq <= 1:
return 1e10
return (((self.sum_sq) - ((self.sum) ** 2) / (self.freq)) /
(self.freq - 1))
def std_dev(self):
return self.variance() ** .5
def sample_std_dev(self):
return (self.variance() / (self.freq or 1)) ** .5
def __add__(self, o):
self._assert_priors_match(o)
ret = MeanVarStat()
ret.freq = self.freq + o.freq - o.pfreq
ret.sum = self.sum + o.sum - o.psum
ret.sum_sq = self.sum_sq + o.sum_sq - o.psum_sq
return ret
def __sub__(self, o):
self._assert_priors_match(o)
ret = MeanVarStat()
ret.freq = self.freq - o.freq + o.pfreq
ret.sum = self.sum - o.sum + o.psum
ret.sum_sq = self.sum_sq - o.sum_sq + o.psum_sq
return ret
def mean_diff(self, o):
return DiffStat(self, o)
def render_interval(self, factor=2, sig_digits=2):
if self.sample_std_dev() >= 10000:
return u'-'
return u'%.2f ± %.2f' % (self.mean(), factor * self.sample_std_dev())
def __eq__(self, o):
assert type(o) == MeanVarStat
return (self.freq == o.freq and
self.sum == o.sum and
self.sum_sq == o.sum_sq)
def to_primitive_object(self):
return [self.freq, self.sum, self.sum_sq]
def from_primitive_object(self, obj):
if type(obj) == list:
self.freq, self.sum, self.sum_sq = obj
elif type(obj) == dict:
self.__dict__ = obj
else:
assert 'Confused by obj %s' % str(obj) and False
def _assert_priors_match(self, obj):
assert self.pfreq == obj.pfreq
assert self.psum == obj.psum
assert self.psum_sq == obj.psum_sq
def merge(self, obj):
self._assert_priors_match(obj)
self.freq += obj.freq - obj.pfreq
self.sum += obj.sum - obj.psum
self.sum_sq += obj.sum_sq - obj.psum_sq
def __str__(self):
return '%s, %s, %s' % (self.freq, self.sum, self.sum_sq)
class DiffStat(object):
"""
Statistics about the difference in means of two distributions.
"""
def __init__(self, mvs1, mvs2):
self.mvs1 = mvs1
self.mvs2 = mvs2
@property
def freq(self):
return self.mvs1.freq
def render_interval(self, factor=2, sig_digits=2):
if self.sample_std_dev() >= 10000:
return u'-'
return u'%.2f ± %.2f' % (self.mean(), factor * self.sample_std_dev())
def render_std_devs(self):
if not self.freq:
return u'-'
return u'%.2f' % (self.mean() / self.sample_std_dev())
def mean(self):
return self.mvs1.mean() - self.mvs2.mean()
def sample_std_dev(self):
return math.hypot(self.mvs1.sample_std_dev(),
self.mvs2.sample_std_dev())
def mean_diff(self, o):
return DiffStat(self, o)