-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_noAction.py
43 lines (34 loc) · 1.39 KB
/
main_noAction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (c) 2024, RTE (https://www.rte-france.com)
# See AUTHORS.txt
# SPDX-License-Identifier: MPL-2.0
# This file is part of RL-filtering, a project for bid filtering in European balancing platforms.
from sb3_contrib import TQC
from models.FilteringEnv import FilteringEnv
class DoNothingAgent:
# agent that does not filter -> price delta is null
def __init__(self, gym_env):
self.action_space = gym_env.action_space
self._nb_bid_max = gym_env._nb_bid_max
def predict(self, obs, deterministic):
delta = [0]*self._nb_bid_max
return delta, []
def evaluate(env, model):
#evaluate Do Nothing or Proposed filtering agent over 52 weeks
sum_reward = 0
for i in range(52):
obs = env.reset()
done = False
while not done:
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
sum_reward += reward
print("reward", sum_reward)
print("total reward", sum_reward)
if __name__=='__main__':
mode = "ProposedFiltering" #"DoNothing"
env = FilteringEnv(max_vol=200) #max redispatch volume
if mode == "DoNothing":
model = DoNothingAgent(env)
else:
model = TQC.load("saved_ex/TQC_LR_00003_NNsize_50_volLim200_130000_steps.zip", env=env) #load saved model
evaluate(env, model)