-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_NAO_simluation.m
165 lines (137 loc) · 4.88 KB
/
main_NAO_simluation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
% This script tests for iterative refinement on simulated data
%
% Author: Sipu Ruan, [email protected], 2020
clear; close all; clc
%% Add file dependencies
addpath util/
addpath solvers/
%% Generate Data
% Initial guesses:
% 1 for identity; 2 for results from Prob 1.
init_guess = 2;
% Initial guess as Identity
if init_guess == 1
X_init = eye(4);
Y_init = eye(4);
Z_init = eye(4);
end
% Choice of scramble rate
isRandPerm = 1;
r = 0:10:100;
num_trials = 20;
for n = 1:num_trials
disp(['Num of trials:', num2str(n)])
% True values for simulations
[X_true, Y_true, Z_true] = InitializeXYZ(1);
for rk = 1:size(r,2)
length = 100;
Mean = [0; 0; 0; 0; 0 ;0];
Cov = 0.1*eye(6,6);
A = []; B = []; C = []; Bp = [];
% Generate A, B, C using different data distribution and noise
% level
for i = 1:5
[A1{i}, B1{i}, C1{i}] = generateABC(length, 1, 1, Mean, Cov, X_true, Y_true, Z_true);
[A2{i}, B2{i}, C2{i}] = generateABC(length, 3, 1, Mean, Cov, X_true, Y_true, Z_true);
AA = cat(3, A1{i}, A2{i});
BB = cat(3, B1{i}, B2{i});
CC = cat(3, C1{i}, C2{i});
A = cat(3, A, AA);
B = cat(3, B, BB);
C = cat(3, C, CC);
if isRandPerm
Bp1{i} = scrambleData(B1{i}, r(rk));
Bp2{i} = scrambleData(B2{i}, r(rk));
end
end
% Inputs for Prob 1
AA1 = A1{1}; BB1 = B1{1}; CC1 = C1{1};
AA2 = A2{1}; BB2 = B2{1}; CC2 = C2{1};
if isRandPerm
BBp1 = scrambleData(BB1, r(rk));
BBp2 = scrambleData(BB2, r(rk));
Bp = scrambleData(B, r(rk));
end
%% Prob 1
disp('Probabilistic Method 1...')
[X_cal1, Y_cal1, Z_cal1] = axbyczProb1(AA1(:,:,1), BBp1, CC1, ...
AA2, BBp2, CC2(:,:,1), 0, 0, 0);
% Initial guess for iterative refinement as the results from prob 1
if init_guess == 2
X_init = X_cal1;
Y_init = Y_cal1;
Z_init = Z_cal1;
end
%% Iteratice Refinement
disp('Iteratice Refinement...')
[X_cal2, Y_cal2, Z_cal2, num2(rk)] = axbyczProb3(A1, Bp1, C1, ...
A2, Bp2, C2, X_init, Y_init, Z_init);
%% Call traditional AXB=YCZ algorithm to solve for X, Y and Z given A, B and C
disp('Wang Method...')
[X_cal3, Y_cal3, Z_cal3, num3(rk)] = Wang_AXBYCZ(A, Bp, C,...
X_init, Y_init, Z_init);
%% Verification
% Prob 1
err_prob(rk,:,n) = getErrorAXBYCZ(X_cal1, Y_cal1, Z_cal1, ...
X_true, Y_true, Z_true);
err1(rk,n) = metric(A1,B1,C1,X_cal1,Y_cal1,Z_cal1) +...
metric(A2,B2,C2,X_cal1,Y_cal1,Z_cal1);
% Iterative refinement
err_iter(rk,:,n) = getErrorAXBYCZ(X_cal2, Y_cal2, Z_cal2, ...
X_true, Y_true, Z_true);
err2(rk,n) = metric(A1,B1,C1,X_cal2,Y_cal2,Z_cal2) +...
metric(A2,B2,C2,X_cal2,Y_cal2,Z_cal2);
% Wang method
err_wang(rk,:,n) = getErrorAXBYCZ(X_cal3, Y_cal3, Z_cal3, ...
X_true, Y_true, Z_true);
err3(rk,n) = metric(A1,B1,C1,X_cal3,Y_cal3,Z_cal3) +...
metric(A2,B2,C2,X_cal3,Y_cal3,Z_cal3);
end
end
%% Compute the averaged errors
err_prob_avg = sum(err_prob,3)/num_trials;
err_iter_avg = sum(err_iter,3)/num_trials;
err_wang_avg = sum(err_wang,3)/num_trials;
err1_avg = sum(err1,2)/num_trials;
err2_avg = sum(err2,2)/num_trials;
err3_avg = sum(err3,2)/num_trials;
%% Plot error v.s. scramble rate
% Errors with ground truth
figure; hold on;
fontSize = 20;
lineW = 1;
y_lb = {'$R_{X}$', '$R_{Y}$', '$R_{Z}$',...
'${\bf t_{X}}$', '${\bf t_{Y}}$', '${\bf t_{Z}}$'};
for i = 1:6
% ------- Subplot 1 ------- %
subplot(2,3,i); hold on
plot(r, err_prob_avg(:,i), 'o-r', 'LineWidth', lineW)
plot(r, err_iter_avg(:,i), 'd-g', 'LineWidth', lineW)
plot(r, err_wang_avg(:,i), '*-b', 'LineWidth', lineW)
len1 = legend('Prob1','Iterative','Wang');
ylabel(y_lb{i},'FontSize',fontSize,'Interpreter','latex');
xlabel('Scramble Rate / %')
end
% Errors between two sides of calibration equations
figure; hold on;
fontSize = 20;
lineW = 1;
plot(r,err1_avg, 'o-r', 'LineWidth', lineW);
plot(r,err2_avg, 'd-g','LineWidth', lineW);
plot(r,err3_avg, '*-b','LineWidth', lineW);
lgd = legend('Prob 1', 'Iterative', 'Wang');
lgd.FontSize = fontSize;
xlabel('Scramble Rate (%)', 'FontSize', fontSize)
ylabel('Error', 'FontSize', fontSize)
%% Metric for computing errors between two sides of calibration equations
function diff = metric(A,B,C,X,Y,Z)
diff = 0;
N = 0;
for i = 1:size(A,2)
for j = 1:size(A{i},3)
diff = diff + norm(A{i}(:,:,j)*X*B{i}(:,:,j)-Y*C{i}(:,:,j)*Z, 'fro');
N = N+1;
end
end
diff = diff/N;
end