-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
31 lines (26 loc) · 841 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Gen_Net(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Gen_Net, self).__init__()
self.fc1 = nn.Linear(input_size,hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.elu(self.fc1(x))
x = F.sigmoid(self.fc2(x))
x = self.fc3(x)
return x
class Disc_Net(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Disc_Net, self).__init__()
self.fc1 = nn.Linear(input_size,hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.elu(self.fc1(x))
x = F.selu(self.fc2(x))
x = F.sigmoid(self.fc3(x))
return x