-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathchecksum_torch.py
executable file
·78 lines (66 loc) · 2.85 KB
/
checksum_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
Copyright (C) 2017, 申瑞珉 (Ruimin Shen)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import argparse
import configparser
import logging
import logging.config
import hashlib
import yaml
import torch
import torch.autograd
import cv2
import utils
import utils.train
import model
import transform
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
torch.manual_seed(args.seed)
cache_dir = utils.get_cache_dir(config)
model_dir = utils.get_model_dir(config)
category = utils.get_category(config, cache_dir if os.path.exists(cache_dir) else None)
anchors = utils.get_anchors(config)
anchors = torch.from_numpy(anchors).contiguous()
path, step, epoch = utils.train.load_model(model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config, state_dict), anchors, len(category))
dnn.load_state_dict(state_dict)
height, width = tuple(map(int, config.get('image', 'size').split()))
tensor = torch.randn(1, 3, height, width)
# Checksum
for key, var in dnn.state_dict().items():
a = var.cpu().numpy()
print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()])))
output = dnn(torch.autograd.Variable(tensor, volatile=True)).data
for key, a in [
('tensor', tensor.cpu().numpy()),
('output', output.cpu().numpy()),
]:
print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()])))
def make_args():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', nargs='+', default=['config.ini'], help='config file')
parser.add_argument('-m', '--modify', nargs='+', default=[], help='modify config')
parser.add_argument('--logging', default='logging.yml', help='logging config')
parser.add_argument('-s', '--seed', default=0, type=int, help='a seed to create a random image tensor')
return parser.parse_args()
if __name__ == '__main__':
main()